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ABSTRACT 

Steady-state and time-resolved fluorescence techniques enjoy widespread applicability in 

domains ranging from biology to materials science owing to their extraordinary sensitivity and 

dynamic range. 

Among the most useful of these techniques is time-correlated, single-photon counting, 

which forms the basis of another: fluorescence lifetime imaging using stimulated emission 

depletion microscopy (FLIM-STED), which is used to obtain structural information on a 

subdiffraction-limited level (i.e., 40 nm or less).  The high spatial resolution afforded by this 

technique is, however, accompanied by a reduction in the number of photons collected.  Thus, its 

utility can only be exploited when meaningful information can be retrieved from sparse data sets.  

This retrieval requires the use of proper modeling and efficient analysis techniques.  In this 

dissertation, several such techniques and their significance in super-resolution imaging are 

discussed in the context of extracting excited state fluorescence lifetime of one or more 

fluorophores.  Probability-based, maximum-likelihood (ML) methods are compared with residual 

minimization (RM) methods in order to determine the limiting number of photons that are required 

to provide a meaningful analysis of the data.  The ML methods are more robust and show 

considerable improvement over RM methods. The ML methods are further improved by 

implementing a Bayesian framework, where a nonuniform prior distribution of the parameters is 

included in the form of a Gaussian, an exponential, or a Dirichlet distribution.  

Two examples of the applications of the steady-state and time-resolved techniques are 

provided: the characterization of the properties of magnetic ionic liquids (MILs) and those of poly 

(3-hexylthiophene) (P3HT). MILs facilitate the solvent extraction of bioanalytes, e.g. DNA 

extraction from an aqueous solvent, with the help of an external magnetic field.  The presence of 



www.manaraa.com

x 

 

paramagnetic ions, however, introduces several mechanisms of nonradiative quenching for the 

fluorescence of the label. Several MILs are screened to find a suitable candidate for DNA 

extraction using fluorescence spectroscopy.  P3HT is used as the active donor layer of organic 

photovoltaics owing to their high photon-conversion efficiency. The structural details of the 

polymer aggregates of a thin film of P3HT exposed to electric filed are studied using steady-state 

and time-resolved anisotropy.  Preferential orientations of the polymer backbone are observed if 

the thin film is exposed to an electric field during preparation.  
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CHAPTER 1.  GENERAL INTRODUCTION  

 

1.1  Overview 

The interaction of light with matter has a broad range of applications in the physical, 

chemical, and biological sciences.  The classical description of light is that it is composed of 

oscillating electric and magnetic fields that carry energy and interact with the medium through 

which they travel, often changing their own characteristics.1-7 The quantum theory of light, on the 

other hand, describes it as being composed of discrete packets of energy knows as photons.3,7,8 

When those photons interact with the atoms or molecules of the medium, they are scattered, 

absorbed, or emitted as new photons.9-13 Optical spectroscopy is the field of study that exploits this 

quantum nature of light to “visualize” the various properties of materials.  Steady-state and time-

resolved fluorescence spectroscopy are among a few of the very sensitive and powerful techniques 

that have been used for last few decades to study materials that are important in physics, chemistry, 

and biology.12-15 With the development of sophisticated laser technology and techniques, it has 

become possible to probe photophysical processes such as the relaxation of excited states, energy 

transfer, electron transfer, solvation dynamics, rotational orientation, diffusion, and many others 

that occur over times scales from femtosecond to microsecond and longer.15 Time-resolved 

techniques such as time-correlated, single-photon counting (TCSPC), fluorescence upconversion, 

and pump-probe spectroscopy are extremely sensitive and reliable tools to quantify these 

processes.7,14-18  

More recently, microscopy techniques based upon fluorescence or Raman spectroscopy 

have become widespread owing to their ability to map physical and chemical information in the 

spatial dimensions of the samples.  The importance of super resolution microscopies was 
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acknowledged by a 2014 Noble Prize in chemistry.  Some of the most popular and important super 

resolution techniques are stimulated emission depletion microscopy (STED),19-21 stochastic optical 

reconstruction microscopy (STORM),22 and photoactivated localization microscopy (PALM).23,24  

Super resolution imaging can also be performed using coherent anti-Stokes Raman (CARS) 

microscopy,25,26  Development of super resolution techniques depends on progress in two areas.  

In one hand, there is the need for continued development and modification of instrumentation and 

the synthesis of suitable chemicals probe molecules, specifically, brighter and more stable 

fluorophores are undergoing.  On the other hand, there is the need to develop efficient methods of 

analysis for the information-rich data sets that these experiments generate.27-50 Analyses of the data 

obtained from super resolution microscopy techniques often pose unique challenges owing to 

factors ranging from low signal intensity, photodegradation of the sample, fitting models and data 

analysis, etc.  The development of improved methods of data analysis can improve experimental 

design and reduce data acquisition time.   

The dissertation will discuss: (1) efficient data analysis techniques that can improve the 

design of super resolution experiments and extract more information from them in Chapters 3-5; 

(2) various spectroscopic techniques in Chapter 2; and (3) their application for characterization 

of materials relevant to the bioanalytics, bioimaging, and solar energy in Chapters 6-7. 
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1.2  The Importance of Developing Improved Methods of Analyzing Time-Resolved Data: 

The Importance of Super Resolution Microscopy Techniques  

1.2.1  Time-resolved stimulated emission depletion (STED) microscopy and the problems 

associated with fitting the data  

Fluorescence-based techniques are the most commonly used for probe biological 

structure.51,52  Despite continued development of optical systems and microscopes, their resolving 

power has a fundamental limit.19,20,53-61  Owing to the wave nature of light, the signal from a point 

source undergoes diffraction and produces a three-dimensional intensity distribution with a finite 

width in the image plane.  This intensity profile is known as point spread function (PSF).  The 

width (full-width half-maximum, FWHM) of the PSF is given by the Abbe diffraction limit, which 

can be approximated by 0.61𝜆/𝑁𝐴 in the lateral dimension, where 𝜆 is the wavelength of the light 

and 𝑁𝐴 is the numerical aperture of the focusing objective.  In the axial direction, the diffraction 

limit is about twice that of the lateral direction.62  For visible light, i.e., the wavelength range of 

400-700 nm, the diffraction limits are about 200-350 nm in the lateral direction and about 400-700 

nm in the axial direction.  Two objects closer than the diffracting limit of the optical system cannot 

be resolved.  In recent years, however, several super resolution techniques have been developed 

that overcome the diffraction limit.  Stimulated emission depletion microscopy (STED) is one such 

technique.19,20,62-67  Improved spatial resolution in STED is achieved by employing a collinear 

depletion pulse superimposed spatially and temporally upon an excitation pulse.  (Figure 1.1).  

The depletion pulse has a donut-shape profile with zero-intensity at the center and is designed to 

remove fluorescent photons from the periphery of a sample by stimulated emission.  Thus, the 

sample only provides photons from the subdiffraction limited center, resulting in a narrower PSF.  

The width of the PSF in the STED depends on the intensity of the depletion pulse.63  STED is 
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amply described in the literature.21  Theoretically, the spatial resolution comparable to the 

molecular dimensions can be achieved by employing very intense depletion pulse.  A spatial 

resolution of less than 10 nanometers has been achieved in diamond to image the nitrogen-vacancy 

centers.67  The photostability, however, of the fluorophores often limit the applicability of STED.  

should be taken into account to apply such intense light. 

 

Figure 1.1.  Diffraction-limited spot results from the excitation of fluorophores by the excitation 

laser.  In STED-based modification, a colinear “donut-shaped” STED laser is superimposed with 

the excitation laser.  Subdiffraction-limited spot results from the stimulated deexcitation of 

fluorophores at the periphery of the diffraction-limited spot.   

 

Time-correlated, single-photon counting (TCSPC) is the core principle behind the 

fluorescence lifetime imaging microscopy using STED (FLIM-STED).63-66  Owing to its ease of 

use, high sensitivity, and large temporal dynamic range TCSPC is also fundamental to a number 

of other important techniques such as Förster resonance energy transfer (FRET),68-71 fluorescence 

correlation spectroscopy (FCS)72-74, time-resolved fluorescence anisotropy.75-77  A TCSPC 

instrument records the time difference between the arrival times of an excitation pulse and a pulse 

resulting from a photon detected from fluorescence emission.  These time-tagged data are typically 
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collected for many cycles of a periodic excitation source to construct a histogram of the photon 

distribution and subsequently, the data can be analyzed to extract the mean excited state lifetime 

of the fluorophores.  For fluorescence lifetime imaging using STED (FILM-STED), the sample is 

raster-scanned in the spatial dimension; and each pixel represents one histogram in the temporal 

dimension (Figure 1.2).  The excited-state lifetimes of the fluorophores are sensitive to the local 

environment; and, therefore, FLIM-STED can, in principle, be used to probe spatial heterogeneity 

at sub-100 nanometer level.  

 

Figure 1.2.  (a) Schematic diagram, showing a raster-scanned FILM-STED (b) A representative 

histogram corresponding to one pixel. 

 

1.2.2  Analysis of time-resolved data 

The spontaneous emission of photons from the excited state of a collection of molecules 

does not occur at the same time, but is given by a Poisson distribution,78 just as for the emission 

of radiation from decaying nuclei.79,80 The decay of the excited state of a single species commonly 

follows first-order kinetics (Figure 1.3).  The fluorescence signal from a heterogeneous sample is 

usually given by the sum of decaying exponential functions. 
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where 𝐹(𝑡) is the fluorescence intensity at time 𝑡 and is proportional to the number of photons 

collected.  𝐹(𝑡0) is the fluorescence intensity at an arbitrary time 𝑡0 after the excitation. 

 

 

Figure 1.3.  (a) Depiction of the excited state fluorescence lifetime in Jablonski diagram.  A – 

absorption, F – fluorescence emission, 𝜏 – fluorescence lifetime, S0 and S1 are the ground and 

excited electronic states (singlet) respectively (b) An exponential decay function, the most popular 

model for the fluorescence lifetime of a single fluorophore. 

 

 The subscript 𝑛 denotes the 𝑛-th species in the heterogeneous sample, 𝜏𝑛 and 𝑎𝑛 are the mean 

excited state lifetime and the fractional composition respectively for the 𝑛-th species, where 

∑ 𝑎𝑛 = 1𝑛 .  The excitation laser pulse is not a delta function, and each of the components of the 

detection system (for example, photo-detector, monochromator, and electronics) may further 

broaden and distort it, thus producing the instrument response function (IRF).  The measured 

fluorescence decay, 𝐷(𝑡), is thus the convolution of the IRF with the undistorted excited-state 

fluorescence decay profile given in equation (1.1):  
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where 𝐼(𝑡) is the experimentally measured IRF.14 The true form of the undistorted decay, 𝐹(𝑡), 

can not be easily obtained since the inverse problem is mathematically ill-formulated81-83 (i.e., 

many solutions may adequately describe the observed decay).  

Most frequently, the analysis of TCSPC data to extract the mean lifetime(s) is performed 

using a nonlinear, least-squares technique, which is referred to as Residual Minimization (RM).84,85 

RM minimizes the weighted squares of the residuals86-88 of the experimental data and the 

optimized fitting function.  In RM-based analyses, a histogram of very high quality is required in 

order to extract the mean excited state lifetime with high accuracy; and such a histogram is only 

obtained with a large number of total photon counts.84,85,89  The acquisition of such a high-quality 

histogram, however, is usually not possible for FLIM-STED.  First, in this experiment, the 

improved spatial resolution is obtained by reducing the number of fluorophores with the STED 

depletion pulse.  The effective focal volume from which the signal is obtained is, therefore, greatly 

reduced.  Second, the improved spatial resolution is also gained by higher laser powers, which 

introduces photobleaching and irreversible photodamage.  In order to minimize these, it is 

necessary to reduce the data collection time per pixel, which in turn also reduces the number of 

collected photons.  Third, the mere fact of acquiring a super-resolution image usually implies the 

need for reducing the data collection time per pixel.  A 10-fold improvement in the resolution 

requires a 100-fold increase in the number of pixel for a 2D sample and 1000-fold increase for a 

3D sample and, thus, a proportional increase in the overall data acquisition time.  Fourth, often 

because of the specific requirement of the experiment, one is limited to a fluorescent probe with a 

low quantum yield.  Thus, FLIM-STED data may often be comprised of small numbers of photons 

counts yielding poor quality-histograms for lifetime analysis (Figure 1.4).  Unless there is a certain 
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number of total counts, RM yields a poor estimate of the mean lifetime.  The total number of 

photon counts can be increased by spatial binning of the adjacent pixels.  This, however, 

compromises the spatial resolution, defeating the purpose of the super resolution imaging 

experiment in the first place.  Binning time channel has also been demonstrated89 to increase the 

total number of counts.  But temporal binning also has some drawbacks.  For example, it 

compromises the temporal resolution by lowering the dynamic range.  There are numerous other 

analysis techniques such as Laguerre expansion,90-93 Laplace transform,14,94 global analysis,95-97 

maximum entropy method,98-101 smoothed exponential series method,102-104 basis pursuit 

denoising,105,106 and compressive sensing.83,107-109 that are applied to photon counting data.  Each 

has several advantages and disadvantages.  This dissertation, however, focuses on several 

probability-based methods that perform extremely well for data sets comprised of sparse photon 

counts.84-86 A brief discussion of the key concepts is presented here.  More details of the 

methodologies are provided in Chapters 3-5.  

 

Figure 1.4.  Examples of time-correlated single-photon counting data.  The quality of the data 

directly related to the number of total photon counts (labeled in each panel).  

 

1.2.3  Maximum likelihood (ML) method 

Maximum likelihood (ML) is one of the most robust parameter-estimation methods in 

statistics.  Its objective is to maximize the parametric likelihood function given by observed data.  
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Mathematically, the likelihood function is the joint probability distribution function of the 

observation under the assumed model.  If 𝑋  represents a random variable that follows the 

distribution, 𝑓(𝑋; 𝜽), where 𝜽 denotes all the parameters, then the likelihood function is given by: 

 ℒ(𝜽; 𝒙) =∏𝑓(𝑥𝑛; 𝜽)

𝑁

𝑛=1

 (1.3) 

where, 𝑥𝑛 is the 𝑛-th realization of the random variable 𝑋 and 𝒙 is the vector that represents the 𝑁 

number of observations without binning.  It is often convenient to work with the log-likelihood: 

 ℓ(𝜽; 𝒙) = lnℒ(𝜽; 𝒙) = ∑ ln 𝑓(𝑥𝑛; 𝜽)

𝑁

𝑛=1

 (1.4) 

The maximization of the log-likelihood occurs at the same point in the parameter space as the 

maximization of the likelihood itself.  The optimized parameter is given by: 

 �̂� = max
𝜃

ℓ(𝜽; 𝒙) (1.5) 

For convoluted observed data, for example as in equation (1.2), a closed-form solution cannot be 

determined and therefore a numerical global optimization can be employed.  The use of ML to 

analyze photon-counting data was popularized by Baker and Cousins86 in the form of likelihood 

chi-square optimization and subsequently used by others32,110-112.  The likelihood chi-square is 

given by the likelihood ratio of the parametric model and the true model (often approximated by 

the observed data86).  Many comparisons of ML with RM appear in the literature, but they are 

typically limited to simulated data.  Also, these comparisons typically do not consider important 

aspects of the experiment:  e.g., the instrument response function (IRF); bin size; shift parameter 

(which accounts for the wavelength difference between the instrument response function and the 

fluorescence signal); and, most importantly, the total number of photon counts.  
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1.2.4  Poisson distribution  

The spontaneous emission of a photon from the excited state is fundamentally a random 

process, which is believed to follow the Poisson statistics.78,113 The Poisson distribution describes 

the probability (𝑃) of the occurrence of a certain number of events (𝑁) for a given average number 

of events (𝜆) in that time interval.  While the average number of events need not be an integer, the 

number of observed events (𝑁) must be an integer; and the events are independent of each other.  

These criteria are fulfilled in TCSPC experiments since a single photon is detected from each 

periodic and identical excitation pulse.  If the average number of counts (𝜆) is found from a model 

function, the Poisson probability is given by: 

 𝑃(𝑁; 𝜆) =
𝜆𝑁𝑒−𝜆

𝑁!
 (1.6) 

The Poisson probability can be defined for all channels to obtain the distribution of the rate 

parameter (𝜆), and therefore the fluorescence lifetime can be obtained from the model function of 

the rate parameter.84 

 

1.2.5  Binomial distribution  

In a TCSPC experiment, the photon counts are registered in one of the bins in the temporal 

channel.  The probability distribution of the number of success that a photon is registered in a 

particular channel can be described by the binomial distribution.113 For 𝑁 identical and 

independently distributed observations with success, 𝜃𝑡, if the number of observed successes is 𝑘 

in the time channel 𝑡, then the probability distribution of that observation is given by: 

 𝑃(𝑘;𝑁, 𝜃𝑡) = (
𝑁
𝑘
) 𝜃𝑡

𝑘(1 − 𝜃𝑡)
𝑁−𝑘 (1.7) 
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where the first factor on the right is the binomial coefficient.  The probability distribution can be 

maximized for all channels to obtain the distribution of 𝜃𝑡 and thereafter to estimate the related 

parameters (e.g., fluorescence lifetime) that model 𝜃𝑡.
84  

 

1.2.6  Bayesian formulation 

Although ML is a very robust estimation technique, it assumes a uniform probability 

distribution of the parameters.  Thus, any prior knowledge of the distribution of the parameters is 

not utilized.  Implementation of a suitable nonuniform distribution should, therefore, improve the 

estimation.  Let 𝜷  and 𝑬  represent the parameter space and the evidence (i.e., experimental 

observations), respectively.  The posterior distribution of the parameters that defines the model 

for the experimental observation, 𝑃(𝜷|𝑬), is given by the Bayes’ theorem114-116: 

 𝑃(𝜷|𝑬) =
𝑃(𝜷)𝑃(𝑬|𝜷)

𝑃(𝑬)
 (1.8) 

where 𝑃(𝑬|𝜷) is the likelihood of evidence given the set of parameters 𝜷; and 𝑃(𝜷) is the prior 

distribution of the parameters, which can be obtained from the prior knowledge of the parameters.  

The normalization factor, 𝑃(𝑬), in the denominator is known as the marginal likelihood and it can 

be obtained by integrating the posterior probability all other the parameters space.   Therefore, the 

posterior distribution contains both the prior knowledge about the parameters as well as the 

likelihood of the evidence for given values of those parameters.  The posterior acts as the prior 

distribution for a new set of evidence and thus as new evidence are collected, the prior becomes 

more refined and gives better estimates of the parameters that describe the distribution.  The initial 

choice of the prior distribution is the most important part of the Bayesian framework.  In Chapter 

5, Bayesian analyses using Gaussian, exponential, and the Dirichlet priors are been presented. 
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1.3  Ionic Liquids and Magnetic Ionic Liquids  

Ionic liquids (ILs) are a class of compounds usually composed of a large organic cation 

and inorganic or organic anions (Figure 1.5).  Sometimes they are referred to as being molten salts 

at room-temperature, or temperatures “close” to room temperature.  The current working definition 

of ILs (which is somewhat arbitrary) is that of a liquid made of ions that is fluid at temperatures 

below 100 °C.  ILs are usually viscous fluids with low vapor pressure and very high thermal 

stability.  They have a range of catalytic properties.  ILs are gaining much interest in industry and 

academics because of their being (usually) environmentally friendly solvents.  They have a wide 

range of applications in organic synthesis,117-121 liquid-liquid extractions122,123 electrochemical 

studies,124 and in matrix-assisted laser-desorption/ionization mass spectrometry (MALDI) owing 

to their ultralow volatility.125  

 

Figure 1.5.  Examples of ionic liquids (ILs) 
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Magnetic ionic liquids (MILs) are a subclass of ILs that is gaining interest because of their 

potential for use in the analytical application.126,127,128 The cation or the anion of a conventional IL 

is modified with a paramagnetic ion(Figure 1.6).129-131  MILs have similar physicochemical 

properties as those of “traditional” ILs, with the added advantage that they exhibit a strong 

response in the presence of a magnetic field.  The paramagnetic properties of an MIL was first 

reported in 1-butyl-3-methylimidazolium tetrachloroferrate(III) ([BMIM+][FeCl4
−]).131  Various 

MILs were synthesized in order to optimize their physicochemical properties as well as their 

magnetic susceptibility127,132-134.  Using combinations of a multi-cationic platform and a 

paramagnetic anion with large magnetic susceptibility, an effective magnetic moment of 11.56 

Bohr magnetons has been achieved.135  MILs are usually hydrophobic due to the instability of the 

paramagnetic ion in an aqueous medium,135 and the viscosities are often high.127  Recently, a series 

of MILs has been designed based on a metal complex of the hexafluoroacetylacetonate anion, 

which contributes to reducing the viscosity.136  

 

Figure 1.6.  Examples of magnetic ionic liquids (MILs).  (a) Structure of MILs with metal 

chlorides (b) Structure of MILs with metal hexafluoroacetylacetonate.  
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One potential application of MILs is the extraction of DNA or a similar biomolecule from 

the aqueous solution.  MIL-based DNA extraction has been demonstrated recently.137  It has been 

shown that the magnet-based extractions are fast and that the extraction efficiency can reach up to 

57%, much higher than that of traditional liquid-liquid extraction.  Although analysis of the 

extracted analyte can be done using quantitative PCR, a fluorescence-based assay using steady-

state and time-resolved techniques will be more suitable because of the sensitivity afforded by 

fluorescence detection.  Since, however, paramagnetic ions of heavy metals are present, a number 

of mechanisms (e.g., intersystem crossing, excited-state electron transfer, Förster resonance energy 

transfer) can reduce the fluorescence.  In Chapter 6, a quantitative analysis of the fluorescence 

behavior of the fluorescent probe, cyanine5 carboxylic acid (Cy5), isolated and bound to DNA, in 

the presence of MILs is discussed.   

 

1.4  Poly (3-hexylthiophene) (P3HT) 

Since their discovery, bulk-heterojunction (BHJ) organic photovoltaic (OPV) solar cells 

have shown great promise as a source of renewable energy.138,139 Organic photovoltaic materials 

(OPV) are a low-cost alternative140-142 and have higher efficiency (>10%) compared to 

conventional inorganic solar cell materials.143-146 Many OPV materials are based on organic 

polymers with 𝜋-conjugation and have semiconductor properties because of delocalization arising 

from conjugation along the polymer backbone.147 The most studied bulk-heterojunction system is 

the mixture of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM), 

where P3HT acts as the electron donor and PCBM acts as the electron acceptor (Figure 1.7).138-

146  P3HT:PCBM bulk heterojunctions are commonly deposited from solution onto a transparent 
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conducting oxide (e.g., indium tin oxide, ITO) coated with a water-soluble, hole-conducting layer 

(e.g., PEDOT:PSS).144  The typical power-conversion efficiency is 3-6%.139,148-150  

 

Figure 1.7.  Structures of (a) poly(3-hexylthiophene) (P3HT) (b) phenyl-C61-butyric acid methyl 

ester (PCBM).  (c) Schematic representation of the organic photovoltaics where P3HT and PCBM 

are used as the active layer.  

 

There have been several studies on this system aiming to improve the power conversion 

efficiency that explored the morphological characteristics (size, shape, texture), interlayer 

diffusion dynamics, phase separation, molecular weight, heterogeneity, effect of temperature, 

effect of impurities, etc.138-146,151-160 161  The most important factor that affects the efficiency of a 

photovoltaic is the overlap between the absorption spectrum of the polymer and spectrum of solar 

radiation.  P3HT is an excellent absorber and has very wide-band of absorption in the UV-visible 

region.  The band gap can be tuned by changing the composition of the P3HT:PCBM composite.  

The alignment of the polymer can also have an effect of on the band gap.  It has been observed 

that a “Head-Tail” alignment of P3HT has a narrower band gap than a “Head-Head” alignment.162  
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Generation of photocarriers and their transfer to the heterojunction plays an important role in the 

overall efficiency and the proper function of the photovoltaics.  Several studies have been 

performed to characterize the charge-transfer process between conducting polymers and the 

PCBM acceptor.163-166 The excited-state lifetime of the polymer is greater than the time-scale of 

the charge transfer.  This indicates that the charge-transfer efficiency can become very close to 

100%.167   Owing to its small exciton-diffusion length (3-8.9 nm) and relatively large charge-

transfer radius (4.8-9 nm), the generated exciton can delocalize very rapidly and diffuse through 

the polymer domain.168,169  

Another important factor that contributes to the high efficiency is the optimization of the 

regioregularity or the degree of crystallinity.  In general, the higher the crystallinity the higher will 

be the charge-carrier mobility.157-160  Lowering regioregularity, however, will lead to superior 

thermal stability.156  The molecular weight of P3HT also plays a crucial role.  It has been shown 

that polymers of P3HT with higher molecular weight show periodic lamellar structure,151 and in 

such cases higher hole mobility has been observed in pure P3HT.170,171  Photophysical studies 

suggest that the regioregular P3HT forms weakly interacting H-aggregates where polarization 

dipoles are perpendicular to the polymer backbone.172-174  On the other hand, when the molecular 

weight is higher, a J-aggregate is preferred, where the polarization dipoles are parallel to the 

polymer backbone.175-178  These two types of aggregates can be identified by the relative intensity 

of their vibronic transitions.  The direction of the deposited layers, their thickness, and their 

composition also greatly affect the efficiency.161,179,180  While thicker layers of P3HT:PCBM will 

allow greater absorption of light, the thinner layers enhance the charge transport.181,182  The typical 

weight ratio of P3HT:PCBM lies between 1:0.8-1:1, which prevents phase separation of the two 

components.182,183  The efficiency of this photovoltaics is also affected by the thermal annealing 
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of the P3HT:PCBM layers before or after the electrode deposition.184  Steady-state and time-

resolved fluorescence anisotropy of P3HT polymer exposed to electric fields are been discussed 

in Chapter 7. 

1.5  Dissertation Outline 

This dissertation is organized into seven chapters.  A brief introduction to the topics and 

material systems discussed are presented in Chapter 1, which provides necessary background 

about the super-resolution imaging, time-correlated single-photon counting, and theoretical 

aspects of data analysis as well as background information about the ionic liquids, magnetic ionic 

liquids, and poly (3-hexylthiophene) films.  Chapter 2 describes basic principles of steady-state 

and time-resolved fluorescence techniques that are used throughout this dissertation.  Chapter 3 

presents the maximum likelihood techniques used to extract the excited-state fluorescence lifetime 

of a fluorophore from sparse photon counting data.  The application has been further extended to 

accommodate the mixture of fluorophores with various compositions in Chapter 4.  It also 

provides an insight into the distribution of fluorescence lifetime by incorporating a bin-by-bin 

analysis.  Chapter 5 discusses a Bayesian formulation to improve the estimation of fluorescence 

lifetimes using Gaussian, exponential, and Dirichlet prior distributions.  Criteria for selecting 

magnetic ionic liquids in DNA extraction are considered in Chapter 6.  This chapter also discusses 

various fluorescence quenching mechanisms relevant to the study and use of fluorescence 

techniques for quantitative analysis of them.  Chapter 7 describes the characterization of poly (3-

hexylthiophene) films, exposed to the electric fields, using steady-state and time-resolved 

polarization spectroscopy. 
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CHAPTER 2.  EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION  

 

2.1  Overview 

Fluorescence-based spectroscopic techniques are classified into two categories:  steady-

state and time-resolved.  Although time-resolved techniques can probe photophysical processes 

that occur over times scales from femtosecond to microsecond and longer, it is often necessary 

and convenient to complement them with steady-state measurements.  Steady-state measurements 

require a constant illumination source and a spectrometer attached to a detector to analyze the 

transmitted or emitted light.  Generally, the steady-state measurements record spectra when rates 

of excitation and de-excitation reach equilibrium condition and when vibrational and solvent 

induced relaxations are completed.  On the other hand, time-resolved measurements account for 

various transient phenomena such as solvation, electron transfer, proton transfer, energy transfer, 

rotational motion and isomerization of excited molecules.  Time-resolved techniques require 

comparatively more elaborate setup and their regular optimization.  The light source must be 

pulsed and the overall time resolution of the instrument should be shorter than the time scale of 

the process under investigation.  With the development of new measurement techniques and 

availability of ultrafast mode-locked lasers, which can deliver intense short pulses with a temporal 

width of few femtoseconds, it has become possible to measure transient phenomena down to the 

femtosecond scale.1-14  

In this chapter, a few selected steady-state and time-resolved techniques, which are relevant 

to the experimental methods used in this dissertation, are discussed in detail.  Apart from that, 

some fundamental concepts associated with the photophysical processes, such as Förster resonance 

energy transfer and fluorescence anisotropy, are also discussed.   
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2.2  UV-Vis Absorption Spectroscopy 

Absorption spectroscopy measures the amount of light absorbed by a molecule at a given 

wavelength.  Particularly, the measurements of absorption in the ultraviolet (UV) and visible (Vis) 

region of the electromagnetic spectrum are very important since the energy corresponds to this 

part of the spectrum overlaps with the energy gap between the electronic states of the common 

fluorophores (many contains C=C, C=O or C=N bonds).15,16 The wavelength region generally used 

is from 190 to 1100 nm.  The energy of transition is related to the wavelength by the following 

equation: 

 /E hc  =  (2.1 ) 

where Δ𝐸 = 𝐸2 − 𝐸1, the energy difference between the excited state and the ground state of the 

vibronic levels17 (the vibrational and the electronic transitions are usually coupled).  ℎ, 𝑐 and 𝜆 are 

the Planck’s constant, speed of light and the wavelength of the light that is absorbed.  The intensity 

of the transition is governed by the factors such as selection rules, oscillator strength, an overlap 

between the states and the population of the molecules.16 The absorption spectra usually consist of 

one or more broad bands due to the vibronic coupling of several vibrational states and further 

broadening of the of each of the transitions.   

The intensity of absorption is quantified by the Beer-Lambert law.18 If a monochromatic 

light of intensity 𝐼0  incident of a sample of thickness 𝐿 , the reduction of intensity (𝑑𝐼) after 

traveling an infinitesimal path (𝑑𝐿) through the sample is given by: 

 𝑑𝐼 = −𝐼𝜎𝒩 𝑑𝐿 (2.2) 

where 𝜎 is known as the effective cross-section for absorption, 𝒩 is the number-density of the 

molecules.  Therefore, the number of photons absorbed is proportional to both the photon density 
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and the density of the molecules (analogous to the bimolecular reaction).  The integrated form of 

the equation (2.2) is given as:16 

 𝐼 = 𝐼0𝑒
−𝜎𝒩𝐿 (2.3) 

The equation is most popularly expressed as: 

 𝐴(𝜆) = 𝜖(𝜆)𝑐𝐿 (2.4) 

where, 𝐴(𝜆)  is the absorbance at a wavelength 𝜆  and given by log10(𝐼0/𝐼) .  𝑐  is the molar 

concentration of the sample in mole dm−3 and related to the number density by 𝒩 = 𝑁𝐴𝑐10
−3, 

𝑁𝐴 being the Avogadro's number.  𝜖(𝜆) is the decadic molar extinction coefficient expressed in 

mole−1 cm−1 dm3  at a wavelength 𝜆  and related to absorption cross-section by 𝜎 = 3.81 ×

10−19𝜖.  The thickness or the pathlength of the sample is usually expressed in cm. 

 

Figure 2.1.  Schematic representation of the UV-Visible spectrometer.  TL – tungsten lamp, DL – 

deuterium-discharge lamp, L1 – source lens, C – cuvette, S – slit, L2 – spectrograph lens, G – 

grating and PDA – photodiode array.19  

 

The instrument used in our laboratory to record the absorption spectra is form Agilent 

Technologies (Agilent 8453 UV-Visible spectrometer).  The optical layout of the UV-Visible 
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spectrometer is given in Figure 2.1.  The source of light is a combination of a deuterium-discharge 

lamp (190-800 nm) and a tungsten lamp (370-1100 nm) that share a common axis with the 

collimating lens.  After passing through the sample, the transmitted light is dispersed by a 

holographic grating at an angle proportional to the wavelength.  Subsequently, the dispersed light 

is detected by an array of 1024 photodiodes, thus providing ~1 nm spectral resolution.19 

 

2.3  Fluorescence Spectroscopy 

After absorbing a photon, the excited state of a molecule loses its energy via radiative 

transition (i.e. emitting another photon) or by many other nonradiative means.16,18 The spontaneous 

radiative transition responsible for the fluorescence usually happens from the ground vibrational 

state of the excited electronic state (singlet) to the excited vibrational state of ground electronic 

state (singlet).  Thus, fluorescence spectrum is associated with the Stokes’ shift and often shows a 

mirror symmetry with the absorption spectrum.16 There are other radiative transitions such as 

phosphorescence that occurs from the triplet excited electronic state to a signet ground electronic 

state, which is spin forbidden.  Resonance energy transfer is a nonradiative process and it is 

discussed in section 2.6 .  The other nonradiative means of deexcitation has been discussed in 

detail in Chapter 6.   

The radiative and nonradiative rate constants are related to the fluorescence lifetime and 

the fluorescence quantum yield.  The lifetime of a fluorophore the average time a molecule lived 

in the excited state.  The most simplified case to describe excited state kinetics involves two 

electronic states and undergo first-order reaction kinetics.  Let 𝑁𝑡  represent the number of 

molecules in the excited state at time 𝑡.  If 𝑘𝑟 and 𝑘𝑛𝑟 are the rate constants for the radiative and 

nonradiative mode of decay in absence of any external quencher then we can have:16 
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 −
𝑑𝑁𝑡

𝑑𝑡
= (𝑘𝑟 + 𝑘𝑛𝑟)𝑁𝑡 (2.5) 

This equation yields 

 𝑁𝑡 = 𝑁0𝑒
−(𝑘𝑟+𝑘𝑛𝑟)𝑡 (2.6) 

where, 𝑁0 is the number of molecules in the excited state at time 𝑡 = 0.  The average lifetime of 

the excited state is given by: 

 𝜏 =
1

𝑘𝑟 + 𝑘𝑛𝑟
 (2.7) 

The fluorescence quantum yield is defined as the ratio of the number of photons emitted as 

radiative decay and the number of photons absorbed.18,20  

 𝜙 =
𝑁𝑒𝑚

𝑁𝑎𝑏𝑠
 (2.8) 

If we only consider the radiative part of the emission, the rate of the process is given by  

 
𝑑𝑁𝑟,𝑡

𝑑𝑡
= 𝑘𝑟𝑁𝑡 (2.9) 

where 𝑁𝑟,𝑡 is the number of emitted photon at time 𝑡.  Using equation (2.6) we have:  

 
𝑑𝑁𝑟,𝑡

𝑑𝑡
= 𝑘𝑟𝑁0𝑒

−(𝑘𝑟+𝑘𝑛𝑟)𝑡 (2.10) 

Integration of the above equation yields: 

 Δ𝑁𝑟 = 𝑘𝑟𝑁0

1

𝑘𝑟 + 𝑘𝑛𝑟
 (2.11) 
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where, Δ𝑁𝑟 is the total number of photons that emitted after the excitation i.e. 𝑁𝑒𝑚 = Δ𝑁𝑟.  On the 

other hand, 𝑁0 is the total number of molecules in the excited state immediately after excitation 

(𝑡 = 0) and hence is the number of photons absorbed i.e. 𝑁𝑎𝑏𝑠 = 𝑁0 .  Note, a single photon 

interacts with no more than one molecule and one molecule generates no more than one photon 

(i.e. multiphoton processes are assumed to be absent).  Therefore, using equation (2.8) and (2.11) 

we have: 

 𝜙 =
𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟
 (2.12) 

Equation (2.7) and (2.12) can be used together to obtain the value of 𝑘𝑟 and 𝑘𝑛𝑟 as follows: 

 𝑘𝑟 = 𝜙/𝜏    ;    𝑘𝑛𝑟 = (1 − 𝜙)/𝜏  (2.13) 

The lifetime of a fluorophore can be measured by time-correlated single-photon counting (TCSPC) 

techniques, working principle of which has been discussed in section 2.4 .  In this section, a brief 

description of steady-state fluorimeter and measurement of quantum yields are given. 

Steady-state fluorescence emission is obtained by exciting the sample at the desired 

wavelength and subsequently collection the fluorescence signal, usually in a perpendicular 

geometry to minimize the risk of the source light to reach the detector.22 The spectrofluorometer 

used in our laboratory is from Horiba Scientific (FluoroMax-4).  The optical layout of a typical 

fluorimeter is given in Figure 2.2.21 The basic components of a spectrofluorometer are: a 150 W 

xenon (Xe) arc-lamp (230-1000 nm) as continuous source of visible and ultraviolet light, an 

excitation monochromator to select the excitation wavelength, a sample compartment, an emission 

monochromator to select the emission wavelength, a photomultiplier tube (PMT) to detect the 

fluorescence signal and a system controller that records the data and send it to computer. Since 



www.manaraa.com

38 

 

 

Figure 2.2.  Schematic representation of the spectrofluorometer.  L – xenon lamp, MC1 – 

excitation monochromator, MC2 – emission monochromator, M1, M2 and M3 – mirrors, BS – 

beam splitter, PD – reference photodiode, PMT – photomultiplier tube as the primary detector, PS 

– power supply for the lamp.21   

 

spectrofluorometer is equipped two scanning monochromators, the emission spectrum is recorded 

by scanning the emission monochromator while keeping the excitation monochromator at a fixed 

wavelength ( 𝜆ex ) and the excitation spectrum is obtained by scanning the excitation 

monochromator while keeping emission monochromator at a fixed wavelength (𝜆em ).  The 

adjustable slits provide controls over the intensity of the spectrum.  The primary detector in our 

spectrofluorometer is a photon counting PMT with a saturation limit of 2 × 106 counts per second, 

which provides greater sensitivity compared to analog PMT.  The variable intensity of the source 

light over the range of wavelengths and the degradation of the Xe-lamp over time can be corrected 

by monitoring the lamp spectrum on a reference detector and dividing the primary signal with the 

reference signal at each wavelength.  The transmission efficiency of the monochromator and the 
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detection efficiency of the PMT also varies with wavelength, which can be corrected by 

multiplying a correction factor 𝛾(𝜆) to the experimental spectrum.  Additional corrections, such 

as correction for the dark offset and subtraction of the blank spectrum are also used.  The excitation 

and the emission monochromators are routinely calibrated with respect to the peak of Xe-lamp 

spectrum at 467 nm and the peak of Raman scattering spectrum of water at 397 nm for 𝜆ex = 350 

nm, respectively.21  

The quantum yield of a fluorophore is conveniently determined using the relative 

measurement techniques.23,24 A suitable standard is selected which absorbs and emits in the similar 

wavelength range, soluble in a same or similar solvent as the unknown sample does and whose 

quantum yield is well established.  The relative quantum yield is determined from the fluorescence 

emission and absorption spectra.  Let 𝐹(𝜆𝑒𝑚)  and 𝐴(𝜆𝑒𝑥)  denote instrument-corrected 

fluorescence spectrum and the absorption spectrum of a fluorophore, respectively.  Since, the 

detector of our spectrofluorometer is a photon counting PMT, the total number of photons emitted 

by the fluorophore is proportional to the integrated area under the fluorescence spectrum.  

 𝑁𝑒𝑚 ∝ ∫𝐹(𝜆𝑒𝑚)𝑑𝜆𝑒𝑚 (2.14) 

The fluorescence photon flux reaching the detector depends on the refractive index (𝑛) of the 

medium and it is inversely proportional to the 𝑛2.  Therefore, a correction is necessary to calculate 

the total number of emitted photon.  

 𝑁𝑒𝑚 ∝ (∫𝐹(𝜆𝑒𝑚)𝑑𝜆𝑒𝑚) 𝑛
2 (2.15) 
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When light travels through the medium, the number of photons absorbed is proportional to the 

drop of the intensity.  From the definition of absorbance,  𝐴(𝜆𝑒𝑥) = log10(𝐼0/𝐼), the number of 

photons absorbed can be calculated as: 

 𝑁𝑎𝑏𝑠 ∝ Δ𝐼 = (𝐼0 − 𝐼) = 𝐼0(1 − 10−𝐴(𝜆𝑒𝑥)) (2.16) 

Therefore, from the definition of quantum yield given in equation (2.8) we get: 

 𝜙 ∝
(∫𝐹(𝜆𝑒𝑚)𝑑𝜆𝑒𝑚)𝑛

2

𝐼0(1 − 10−𝐴(𝜆𝑒𝑥))
 (2.17) 

The relative quantum yield is given by: 

 
𝜙𝑆

𝜙𝑅
=
(∫𝐹𝑆(𝜆𝑒𝑚)𝑑𝜆𝑒𝑚)

(∫𝐹𝑅(𝜆𝑒𝑚)𝑑𝜆𝑒𝑚)
 
(1 − 10−𝐴𝑅(𝜆𝑒𝑥))

(1 − 10−𝐴𝑆(𝜆𝑒𝑥))
 
𝑛𝑆
2

𝑛𝑅
2  (2.18) 

where, the subscript 𝑆 and 𝑅 denote the sample and the reference standard respectively.  Choosing 

the same solvent can eliminate the term involving the refractive index and all the other terms can 

be measured spectroscopically.  The quantum yield of the sample (𝜙𝑆) can be determined if the 

quantum yield of the reference (𝜙𝑅) is known.  

 

2.4  Time-Correlated, Single-Photon Counting (TCSPC)  

Time-correlated, single-photon counting is the most important experimental techniques 

that has been utilized extensively in this dissertation.  Unlike the steady-state measurement this 

technique requires a pulsed laser source.  The number of molecules in the excited state after a time 

𝑡 of the pulsed excitation is given by equation (2.6) and the average lifetime of the excited state is 

given by equation (2.7).  Since, the emission from the excited state is random one can only estimate 

the probability that a single molecule will emit a photon within a certain time interval.  The 
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emission intensity is usually proportional to the number of molecules in the excited state; and 

therefore, for a single fluorophore one obtains:25-27 

 𝑃(𝑡) ∝ 𝑒−
𝑡
𝜏 (2.19) 

The excited state decay law can be experimentally obtained by collecting a population of single 

photon which are correlated to times interval between excitation and emission events, instead of 

measuring the intensity after a single pulse.27-30   

 

Figure 2.3.  Schematic representation of time-correlated single-photon counting (TCSPC) 

instrument.  PD – photodiode, BS – beam splitter, M – mirror, PL – polarizer, HWP – half 

waveplate, WP – waveplate, L – lens, NLC – nonlinear crystal for SHG, FL – filter, S – slit, A – 

pre-amplifier, MCP – microchannel plate, PC – Pockel’s cell, PCD – Pockel’s cell driver, T – 

timing electronics, COMP – computer.  
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The TCSPC instrument used in our laboratory is a home-assembled setup.  A schematic 

diagram of the instrument is shown in the Figure 2.3.  The sample is excited with a high repetition-

rate laser.  The fluorescence is collected at the perpendicular geometry, similar to the steady-state 

setup, and subsequently detected by a very sensitive detector, usually micro-channel plate (MCP) 

operated at a voltage of 3000 V for maximum sensitivity.  A secondary reference detector, usually 

a photodiode (PD), is used to synchronize the excitation pulse and to trigger the “start” (or “stop”) 

of the counting process.  At the core of the instrument there a photon counting module from Baker 

and Hickl GmbH (SPC-630).32 The essential components of the module are: constant fraction 

discriminator (CFD) connected to the primary detector (MCP), level trigger form the secondary 

reference detector (PD), time-to-amplitude converter (TAC), biased amplifier, (AMP), analog-to-

digital converter (ADC), histogrammer and  memory for temporary data storage (Figure 2.4). The 

CFD reshape the single photon pulse in order to avoid amplitude and time-related jittering due to 

random amplification mechanism in the detector.  The TAC can be considered as a precise 

stopwatch that can measure time difference in the picosecond.  In reverse mode (as in our setup), 

the TAC is started by the single photon pulse from the primary detector and stopped by the 

reference pulse.  In between a capacitor is charged at a constant rate.  Therefore, the final voltage 

of the capacitor represents the time difference between the fluorescence pulse and reference pulse.  

The amplifier further changes the slope of the voltage vs time graph, which allow selecting smaller 

time window within the TAC range.  The amplified TAC signal is then measured by the ADC 

which determine the time-bin address of the detected event.  The “histogrammer” receives the 

detected event into the corresponding bin-addresses and it is held by the memory onboard (16-bit 

for each channel) until the data is permanently saved.  To ensure a single photon detection per 
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pulse of the laser the count rate at ADC is kept between 1-5 % of the laser repetition rate.27,30 The 

relative delay between the reference pulse and the fluorescence pulse is also critical and once needs 

to adjust them to get a proper time window for the data histogram.  The time resolution of the 

technique is limited by several factors, the most important one is the broadening of the time 

response when photons travel through the optics and subsequently the ejected photoelectron 

thought the detector.  The transit time spread of the detector (Model R3809U-50, Hamamatsu) in 

our laboratory is about 25 ps.  Therefore, considering that the width of the laser pulse is not the 

limiting factor, one would expect a 40 ps instrument response function (IRF) for this detector.27,30 

Note that the IRF is collected in the identical setup by replacing the fluorescence sample with a 

scattering sample and without the filter that cuts the excitation light.    

 

Figure 2.4.  Working principle of TCSPC.  The delay-time (Δ𝑡) for a single fluorescence photon 

is registered randomly form several excitation pulses.  The counting electronics board consists of 

constant fraction discriminator (CFD), synchronized trigger (SYNC), time-to-amplitude converter 

(TAC), biased amplifier (AMP), analog-to-digital converter (ADC), histogrammer (HIST), and 

onboard memory (MEM).31,32 
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2.5  Titanium:sapphire Laser 

Titanium sapphire (Ti:sapphire) laser is the most widely used laser in time-resolved 

applications.  The advantages of using Ti:sapphire in TCSPC application are its short pulse-width 

and its tunability over a range of wavelengths.  The sapphire crystal is partially (0.1-0.5 % w/w) 

doped with titanium oxide (Ti2O3) where some aluminium ion is replaced by the titanium ion.33,34 

The Ti3+ ion in the crystal environment absorbs light in a broad range of wavelengths center at 490 

nm.  The crystal is usually pumped with frequency-doubled Nd:YAG or Nd:YVO4 laser.  The 

lasing action of the Ti:sapphire crystal happens due to the emission from the ground vibrational 

state of the excited electronic state to the excited vibrational state to the ground electronic state.  

The emission band of the Ti:sapphire crystal is very broad and has peak ~800 nm.  The larger 

bandwidth allows generation of ultrashort pulses and the tunability of the laser ranges from 675 

nm to 1110 nm.  The Ti:sapphire laser, also known as Ti:sapphire oscillator, contains the Ti3+ 

doped sapphire crystal as the gain medium and the emission of the fluorescence is trapped between 

two mirrors which constitute the laser cavity.  

2.5.1  Laser modes, pulse-width and repetition rate  

The number of longitudinal modes33 is an important factor that determines the temporal 

width of the pulses of a laser.  For a longitudinal laser mode to persists in the laser cavity, the 

length (𝐿) of the resonator must be integer (𝑛) multiple of half-wavelength (𝜆/2) i.e. 𝐿 = 𝑚(𝜆/2) 

or equivalently, 𝜈 = 𝑚𝑐/2𝐿, where 𝑐 is the speed of light, 𝜈 is the frequency of the 𝑚-th mode.  

The frequency separation between two consecutive modes is given by: 

 Δ𝜈 = 𝜈𝑚+1 − 𝜈𝑚 =
𝑐

2𝐿
 (2.20) 
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The total number of longitudinal can be obtained from the bandwidth in frequency and the and 

divide by the frequency separation (Δ𝜈).  For our system laser system with 𝐿 = 170 cm and 

emission wavelength range 675-1110 nm, the number of possible modes (𝑁𝑚) is about 2 million.35 

The superposition of longitudinal modes become narrower as greater number of modes exists.  The 

uncertainty relation for temporal bandwidth (Δ𝜏𝑝) and total frequency bandwidth (𝑁𝑚Δ𝜈) can be 

written as: 𝛥𝜏𝑝 𝑁𝑚𝛥𝜈 ≥ 1/2𝜋.  For Ti:sapphire medium the total frequency bandwidth is about 

2 × 1014 Hz which corresponds to ~5 femtosecond pulse-width.  It can be shown that the maxima 

of the superposition of the modes are separated by:36𝑇𝑅 = 1/Δ𝜈 = 2𝐿/𝑐.  Therefore, the repetition 

rate is given by: 1/𝑇𝑅 = 𝑐/2𝐿 .  The transverse electromagnetic mode (TEM) determines the 

spatial distribution of the intensity around the resonator axis.36-38 The most import transverse mode 

of the laser is denoted as TEM00 which has Gaussian distribution for a beam with cylindrical 

symmetry.  

 𝐼00(𝑟) = 𝐼00(0)𝑒
−
2𝑟2

𝑤2  
(2.21) 

where, 𝑟 is the distance from the center of the beam, 𝐼00(0) is the intensity of the beam at the 

center and the 𝑤 is defined as 1/𝑒2-radius of the beam (i.e. the distance where intensity drops by 

a factor of 𝑒2 compared to the center).  

2.5.2  Kerr-lens mode-locking  

The Ti:sapphire laser uses a passive39,40 Kerr-lens mode-locking (KLM) mechanism to 

generate ultrashort pulses.  The KLM mechanism is based on the optical Kerr effect, a third order 

nonlinear phenomenon where the effective refractive index changes linearly with the intensity of 

the electric field.36,38,41,42  
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 𝑛(𝐼) = 𝑛0 + 𝑛2I (2.22) 

where, 𝑛2 ∝ 𝜒(3)/𝑛0
2  represent the nonlinear coefficient accounts for the change in refractive 

index, 𝜒(3) is the third order nonlinear susceptibility and 𝑛0 is the linear refractive index.  The 

TEM00 mode of the laser beam has Gaussian intensity distribution with the highest intensity at the 

center.  Thus, the center of the beam experience greater refractive index and travels slower than 

the edge of the beam i.e. the medium acts as a virtual lens and the beam is self-focused.  The 

superimposed mode-locked pulse will have a higher intensity than the continuous wave as the later 

consists of some random modes.  Therefore, if an aperture is placed in the cavity the high-intensity 

mode-locked condition is preferentially selected and the CW is blocked (Figure 2.5).43 A small 

perturbation in the cavity induced fluctuation of modes and large amplitude modulation 

momentarily.  If the modulated intensity is high enough it will initiate mode-locking by preferential 

selection of the mode-locked part of the beam.  

 

Figure 2.5.  Mechanism of Kerr-lens mode-locking in Ti:sapphire crystal.  𝐼(𝑟) is the Gaussian 

intensity profile.  The continuous mode (CW) is blocked by the aperture.  Pulsed mode generated 

Kerr-lens effect (self-focusing) and therefore sustained in the cavity.44   
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2.5.3  Group velocity dispersion  

When electromagnetic waves enter into a medium with a higher refractive index the longer 

wavelengths travel faster than the shorter wavelengths.  This is due to the frequency dependency 

of the refractive index. This phenomenon is known as positive group velocity dispersion 

(GVD).45,46 The mode-locked pulse consists of a range of frequencies, thus when travels through 

the gain medium the redder wavelength leads than the bluer wavelength in each trip.  This causes 

boarding of the pulse and eventually breakdown of the mode-lock condition.  To compensate the 

positive GVD a pair of prisms is introduced in the cavity to induce negative GVD.  The glass 

materials itself caused positive GVD but the geometry of the two prisms in the cavity is causing 

the negative GVD (Figure 2.6).47,48 After dispersion from the first prism the redder wavelengths 

travel more glass on the second prism than the blue wavelengths.  This slows down the redder 

wavelengths and compensate the positive GVD introduced by the crystals.  The degree of negative 

GVD needs to be controlled in order to get stable mode-lock and ultrashort pulses by changing the 

inter-prism distance or by moving the second prism into or from the beam.  

 

Figure 2.6.  Compensation of the positive group velocity dispersion in the cavity by using a pair 

of prisms.44   
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2.5.4  Nonlinear optical properties, frequency mixing and harmonics generation  

The induced polarization (𝑃) on a material varies linearly with the strength of the electric 

field in weak field regime.49-51 When the intensity of light is very strong, as in case of an ultrashort 

laser pulse, the linear relationship between polarization and strength of the field is no longer valid.  

In that regime we have to consider the higher order term of the Taylor series expansion of the 

induced polarization (𝑃).  Thus, the induced polarization can be express as: 

 
(1) (2) (3) (1) (2) (3).... ...P P P P E EE EEE  = + + + = + + +  (2.23) 

where, 𝑃(𝑛) is the 𝑛-th order induced polarization and 𝜒(𝑛) is the 𝑛-th order susceptibility.  If we 

consider only the quadratic dependence of electric field, then the nonlinear induced polarization, 

𝑃(2) is given by: 

 
(2) (2)P EE=  (2.24) 

Let 𝐸(𝑟, 𝑡) = 𝐸0𝑒
−𝑖(𝑘∙𝑟−𝜔𝑡) + 𝑐𝑐  denotes the plane-wave with angular frequency 𝜔  and 

propagation vector 𝑘 , where 𝑐𝑐  denotes the complex conjugate.  The second order nonlinear 

polarization is given by: 

 
(2) (2) 2 ( . ) ( . ) (2) 2 2 (2 . 2 )

0 0 0[ ][ ] [2 ( )i k r t i k r t i k r tP E e cc e cc E E e cc   − − −= + + = + +  (2.25) 

Thus, the nonlinear interaction generates two new polarization terms, one is frequency independent 

and known as optical refraction and another term has a double frequency dependency which is the 

basis for the second harmonic generation (SHG). 

If we have two oscillating fields with different frequency, 𝜔1 and 𝜔2 then the resultant applied 

field is given by:  
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 1 1 2 2( . ) ( . )

0,1 0,2( , ) [ ] [ ]i k r t i k r tE r t E e cc E e cc − −= + + +  (2.26) 

where, 𝐸0,𝑖 and 𝑘𝑖 are the amplitude and the propagation vector for 𝑖-th component.  The second-

order nonlinear polarization becomes:49 

 

1 1 2 2

1 2 1 2 1 2 1 2

(2 . 2 ) (2 . 2 )(2) (2) 2 2 2 2

0,1 0,2 0,1 0,2

( ) ( ) ( ) ( )

0,1 0,2 0,1 0,2

[ ( ) ( ) 2 2

2 ( ) 2 ( )]

i k r t i k r t

i k k r i t i k k r i t

P E e cc E e cc E E

E E e cc E E e cc

 

   

 − −

+ − + − − −

= + + + + +

+ + + +
 (2.27) 

Therefore, apart from the second harmonics of the two input fields we have two more frequency 

dependent terms with frequency 𝜔1 + 𝜔2 and 𝜔1 − 𝜔2, which are known as the sum frequency 

generation (SFG) and the difference frequency generation (DFG) respectively (Figure 2.7).   

 

Figure 2.7.  Schematic representation of nonlinear optical phenomena.  (a) Sum frequency 

generation (𝜔𝑠) (b) Difference frequency generation (𝜔𝑑).  

 

In order to observe the nonlinear effect, the second-order nonlinear susceptibility 𝜒(2) must 

be nonzero which is true in case of the non-centrosymmetric crystals.49 Because, the values of 𝜒(2) 

is very small and the nonlinear polarization depends quadratically a very high intensity of the field 

is also required, which is easily obtained from ultrashort pulses.  Apart from that the nonlinear 

output is only efficient if the proper phase matching condition is met.  This is due to the frequency 
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dependency of the phase velocity and the refractive index of the medium.  The phase matching 

condition for three-wave mixing (second-order nonlinear phenomena) is given in terms of the 

energy (ℏ𝜔) and momentum (ℏ𝑘) conservations.36,41,52,53 

 
1 2

1 2k k k

  +

=

=

+
 (2.28) 

For collinear propagation of the waves in a dispersive material the momentum conservation is 

given as: 

 1 1 1 2 2 2( ) ( ) ( )n n n     = +  (2.29) 

The energy conservation and momentum conservation cannot be independently satisfied in a 

normal dispersive medium.  In a birefringent medium (e.g. barium borate, lithium niobate, 

sapphire) the refractive index depends on the frequency, polarization and the direction of 

propagation of the light through the crystal.  Therefore, by selecting proper incident angles, the 

phase matching condition can be satisfied in such medium.41,52,53  

2.5.1  Ti:sapphire oscillator for TCSPC application  

The optical design of the Ti:sapphire oscillator in our laboratory is given in Figure 2.8 . 

The main laser cavity consists of two curved mirrors transparent to the pump-beam and reflective 

to the laser fundamental, two high-reflective mirror flat mirrors, one optical coupler (10% 

transmission at lasing wavelength), a Ti:sapphire rod (cut at Brewster angle) as the gain medium, 

a pair of prism to compensate group velocity dispersion (GVD).  The gain medium is pumped at 

523 nm with a 5 W frequency-doubled Nd:YAG CW laser from Spectra-Physics (Millennia eV).  

The pump-beam is focus via a lens through one of the curved mirrors.  The fluorescence from the 

doped crystal is reflected from the curved mirrors and goes to the end mirrors (high reflector and 
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the optical coupler respectively) of the two arms of the cavity, then it returns to the crystal via the 

same path.  The returning emission causes more stimulated emission if the gain of the medium 

positive.  Therefore, in each round trip the intensity of light is amplified until it reached the 

saturation limit.  The prisms are specially cut to so that the angle of incidence corresponds to the 

Brewster angle at minimum deviation.  The first prism dispersed the laser and the second prism 

collimate the beam to the high reflector.  The laser can be tuned by placing a vertical slit in between 

the second prism and the high reflector and translating horizontally across the dispersed spectrum.   

 

Figure 2.8.  Optical layout of Ti:sapphire laser in our laboratory.  The pump-laser is a 5 W 

frequency doubled Nd:YAG with an emission wavelength 532 nm.  M1, M2 and M3 – mirrors 

with high reflectivity, L – focusing lens for the pump-beam.  CM1 and CM2 are two curved mirrors 

transparent to the pump-beam and reflective to the Ti:sapphire fluorescence (675-1100 nm).  OC 

-  optical coupler with 10% transmission at 800 nm, C – titanium sapphire crystal.  P1 and P2 are 

the prisms to introduce negative GVD, S – slit to change wavelength and BD – beam dumper.   

 

The asymmetric design of the cavity ensures that the output is high power TEM00 mode.  The 

length of the cavity is about 170 cm which corresponds to the 87.5 MHz repetition rate.  The 
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maximum lasing power of ~800 mW can be achieved in CW mode via optimization of the 

alignment.  At optimal alignment, one curved mirror sitting on the spring stage is slid in towards 

the crystal and gently released to gain mode-locked condition.  

 

The mode-locked output of the laser is usually optimized around 800 nm wavelength.  In 

common practice, the laser is frequency doubled or tripled using SHG and SFG techniques 

mentioned above to convert the wavelength to 400 nm and 266 nm respectively.  This conversion 

allows us to excite a range of samples which we mostly encounter in our laboratory.  The optical 

setup that we use in our laboratory is a pre-built box (Model TP-2000B THG) form U-Oplaz 

Technologies, Inc. The input pulse needs to be vertically polarized and the outputs become 

horizontally and vertically polarized for second and third harmonics respectively.  

Another modification of the laser operation is necessary for practical use in TCSPC.  In 

TCSPC technique, use of a laser with high repetition rate is advantageous since it reduces the data 

acquisition time.  The very high repetition rate of Ti:sapphire, however, disadvantageous for 

samples which have relatively longer fluorescence lifetimes.  For example, the in our setup an 87.5 

MHz repetition rate corresponds to 11.4 ns time-gap between two pulses.  Because of the limitation 

of the photon counting instruments this 11.4 ns time-gap cannot be fully utilized as the TAC range.  

In order to get a decay profile that has maximum within 10% of the time window and the tail has 

counts less than 1% of the maximum, the fluorescence lifetime should be less than 1 ns.  This 

limitation can be avoided by reducing the repetition rate of the laser.  In our laboratory, a pre-build 

pulse selection system form Conoptics Inc is used for the purpose.  The pulse selection system is 

an electro-optic modulator (EOM, Model 350-160) control by a voltage amplifier (Model 25D) in 

association with a synchronized countdown electronics (Model 305).  The EOM acts as a Pockels 
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medium (KH2PO4 crystals) i.e. the refractive index depends on the electric field applied to the 

material.  The two normal components of the linearly polarized light undergo a phase shift due to 

the application of external electric field.  If an appropriate voltage is applied to generate the electric 

field the EOM can act as a half-waveplate and thus change polarization from horizontal to vertical 

or vice versa if the linearly polarized light enters at 45° with respect the crystals axis.  The 

countdown device gets the signal from a reference photodiode.  The repetition rate is divided by 

the user set value and the amplifier is triggered at the divided repetition rate, which sends short 

voltage pulses to the EOM.  When no voltage is applied, a horizontally polarized laser pulse enters 

the EOM, travels unaffected and blocked by the vertical polarizer at the exit of EOM.  When the 

voltage pulse is synchronized with the transit time of a horizontally polarized laser pulse, the 

polarization is switched to vertical at the exit and thus allowed by the vertical polarizer.  Therefore, 

the assembly can be used to reduce the repetition rate of the Ti:sapphire laser.  

2.6  Förster Resonance Energy Transfer  

A molecule in excited state may lose its energy through several radiative and non-radiative 

mechanism.  Resonance energy transfer is one of the important mechanism by which a donor (D) 

molecule returns to its ground state by transferring the energy to an acceptor (A) molecule.  The 

theory of energy transfer was first devolved by Theodor Förster in 194654 based on weak dipole-

dipole interaction and subsequently verified by Stryer et al.55 The mechanism is popularly known 

as Förster resonance energy transfer (FRET).  The FRET is a nonradiative process which means it 

does not involve emission of a photon by the donor and subsequently re-absorption by the acceptor.  

There are several criteria that need to satisfy in order to FRET to happen.  The distance between 

the donor and the acceptor must be within 10-100 Å. A distance closer than 10 Å leads to electron 

transfer, another kind of energy transfer mechanism that also contributes to the nonradiative 
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deexcitation process.56 The emission spectrum of the donor should have some overlap with the 

absorption spectrum of the acceptor.  The excited state lifetime should be longer than the duration 

of the energy transfer.  The following schematic diagram (Figure 2.9) describe the energy transfer 

process. 

The donor (D) molecule absorb a photon and goes to the excited state (D*).  The excited 

donor molecule acts as an oscillating dipole.  When the D* and A molecules are close to each other 

D* induces an oscillation in the acceptor molecule via dipole-dipole interaction.  Similar to two 

 

Figure 2.9.  Schematic of the resonance energy transfer.  AD is the absorption of photon by the 

donor, FD (solid green) is the fluorescence mechanisms of the donor.  The nonradiative resonance 

energy transfer (FRET) is indicated by the dotted red arrows.  Fluorescence emission may also 

take place form acceptor (FA).  All other nonradiative transition are denoted by dotted black 

arrows. S0 and S1 represent the singlet ground and excited electronic states.  

 

mechanically connected pendulums, energy from the D* will transfer completely if the natural 

frequency of oscillation match, in this case which is indicated by the overlap of the spectra.  



www.manaraa.com

55 

 

Therefore, D* loses its energy and A become A*, the excited acceptor molecule.  In order to get 

the effective interaction between the dipoles of D* and A, they must be oriented favorably to each 

other i.e. one or both should have a certain degree of rotational freedom.  

The rate of dipole-dipole energy transfer is given by:16,57-59 

 𝑘𝐸𝑇 =
1

𝜏𝐷 
(
𝑅0
𝑅
)
6

 (2.30) 

where, 𝜏𝐷 is the fluorescence lifetime of the donor in absence of the acceptor.  𝑅 is the distance 

between donor and acceptor; and 𝑅0 is referred to as the “critical distance,” defined by: 

 𝑅0
6 =

9000 ln(10) 𝜙𝐷 𝜅
2

128 𝜋5 𝑛4𝑁𝐴
∫ 𝑓𝐷(�̅�)𝜖𝐴(�̅�)�̅�

−4𝑑�̅�
∞

0

 (2.31) 

where 𝑓𝐷(�̅�) = 𝐹(�̅�)/ ∫ 𝐹(�̅�)𝑑�̅�
∞

0
, is the fluorescence intensity of the unquenched donor 

normalized to the unit area on a wavenumber scale.  The other parameters are:  𝜙𝐷 , the 

fluorescence quantum yield of the donor; 𝜅2, the orientation factor, assumed to be 2/3 for randomly 

oriented donors and acceptors; 𝜖𝐴, the decadic molar extinction coefficient; 𝑛, the refractive index 

of the medium; and 𝑁𝐴, Avogadro’s number.  The efficiency of the energy transfer is often given 

as:18 

 𝐸𝐹𝑅𝐸𝑇 = 1 −
𝜏𝐷𝐴
𝜏𝐷

=
𝑅0
6

𝑅0
6 + 𝑅6

 (2.32) 

where, 𝜏𝐷𝐴 is the excited state lifetime of the donor in presence of the acceptor.  Therefore, 𝑅0 can 

be defined as the distance at which the efficiency of energy transfer is 50%.  
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Figure 2.10.  Orientation of molecular dipoles of the donor and the acceptor with respect o each 

other.  The average contribution of all possible orientation accounted in the 𝜅2-factor.  

 

The rate of nonradiative energy transfer given in equation (2.30) can be obtained from the quantum 

mechanical picture of the weak interaction of dipoles.  The energy of weak dipole -dipole 

interaction is given by:57 

 𝑉 =
1

𝑛2𝑅3
[�⃗�𝐷 ∙ �⃗�𝐴 − 3(�⃗�𝐷 ∙ �̂�)(�̂� ∙ �⃗�𝐴)] (2.33) 

where, �⃗�𝐷 and �⃗�𝐴 are the dipole moment vector of the donor and the acceptor respectively.  �̂� 

denotes the units vector along the distance 𝑅  between the donor and the acceptor.  𝑛 is the 

refractive index of the medium.  The term in the square bracket can be written as:18,57 

 

[𝜇𝐷𝜇𝐴 cos 𝜃𝐷𝐴 − 3𝜇𝐷 cos 𝜃𝐷𝜇𝐴 cos 𝜃𝐴]

= [cos 𝜃𝐷𝐴 − 3 cos 𝜃𝐷 cos 𝜃𝐴]𝜇𝐷𝜇𝐴 = 𝜅𝜇𝐷𝜇𝐴 

(2.34) 

where, 𝜃𝐷𝐴  is the angle between the transition dipole moments vectors of the donor and the 

acceptor, 𝜃𝐷 and 𝜃𝐴 are the angles between the unit vector along the distance 𝑅 and the transition 

dipole moment vectors of the donor and the acceptor respectively (Figure 2.10).  The factor, 𝜅, 

accounts for the orientation of the dipoles and the value of 𝜅2 = 2/3 is obtained from the average 
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contribution from the randomly oriented dipoles.  Note that, 𝜇𝐷 and 𝜇𝐴 are the magnitudes of the 

dipole moment vector.  The equation (2.33) can now be written as: 

 𝑉 =
𝜅

𝑛2𝑅3
𝜇𝐷𝜇𝐴 (2.35) 

The rate of nonradiative energy transfer is given by: 

 

𝑘𝐸𝑇 ∝ |⟨DA∗|𝑉|D∗A⟩|2𝜌(�̅�) = |⟨DA∗|
𝜅

𝑛2𝑅3 𝜇𝐷𝜇𝐴|D
∗A⟩|

2

𝜌(�̅�)

=
𝜅2

𝑛4𝑅6 
|⟨DA∗|𝜇𝐷|D

∗A⟩|2|⟨DA∗|𝜇𝐴|D
∗A⟩|2𝜌(�̅�) 

(2.36) 

where, 𝜌(�̅�) is the probability that the transfer energy corresponds to the wavenumber �̅�.  Note 

that the energy transfer takes place from the state |D∗A⟩ to the state |DA∗⟩.  This equation indicates 

that the rate of energy transfer is inversely proportional to the sixth power of the distance between 

the donor and the acceptor.  The first squared term within the vertical bars is the emission transition 

dipole moment16,60 and that is proportional to �̅�−3𝜏rad 
−1 , where 𝜏rad

−1  is the radiative rate constant.  

The second squared term within the vertical bars is the absorption dipole moment16 and that is 

proportional to 𝜖𝐴(�̅�)�̅�
−1, where 𝜖𝐴(�̅�) is the molar absorptivity as a function of wavenumber.  

𝑓𝐷(�̅�) = 𝐹(�̅�)/ ∫ 𝐹(�̅�)𝑑�̅�
∞

0
 denotes the fraction of the donor fluorescence at wavenumber �̅� and 

therefore is equal to 𝜌(�̅�).  Therefore, integrating over the range of wavenumbers the equation 

(2.36) transform to:  

 𝑘𝐸𝑇 ∝
𝜅2

𝑛4𝑅6 
∫ 𝑓𝐷(�̅�)�̅�

−3𝜏rad 
−1 𝜖𝐴(�̅�)�̅�

−1𝑑�̅�
∞

0

=
𝜅2𝜏rad 

−1

𝑛4𝑅6 
∫ 𝑓𝐷(�̅�)𝜖𝐴(�̅�)�̅�

−4𝑑�̅�
∞

0

 (2.37) 
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The radiative rate constant, 𝜏rad
−1 , can be expressed in terms of the fluorescence quantum yield of 

the donor and the lifetime of the fluorophores using equation (2.13) i.e. 𝜏rad
−1 = 𝜙𝐷/𝜏𝐷. Therefore, 

we can write:  

 𝑘𝐸𝑇 ∝
𝜅2𝜙𝐷

𝑛4𝑅6 𝜏𝐷
∫ 𝑓𝐷(�̅�)𝜖𝐴(�̅�)�̅�

−4𝑑�̅�
∞

0

 (2.38) 

Using proper proportionality constant one would arrive at the equation (2.30) and (2.31). 

Since FRET is dependent on the distance it can be used to study several proximity 

relationships in proteins, nucleic acid, membranes and other biological systems.  The great 

advantage of the FRET is that it can measure distance in Å resolution and it can be used in in vivo 

condition.  In Chapter 6, the FRET has been used to estimate the nonradiative quenching of 

fluorescence of the Cy5 dye by the paramagnetic metal ions.  

2.7  Time-Resolved Fluorescence Anisotropy  

When a fluorophore absorbs polarized light, the subsequent emission is also polarized in 

the same direction of the excitation if the photon is emitted instantaneously.  However, the excited 

state of a typical fluorophore has lifetime in the order of 10−9  s.18 This timescale allows the 

fluorophore to undergo significant angular displacement which affects the polarization of the 

emitted photon.61 In an isotropic solution, where the fluorophore molecules are randomly oriented, 

an incident beam of polarized light preferentially excites molecules with a probability proportional 

to cos2 𝜃, where 𝜃 is the angle between the transition dipole moment of the molecule and the 

polarization of the incident light. This process is known as photoselection.62 The rotation of the 

molecules cause depolarization of the anisotropic distribution of molecules and thus the emission 

is also depolarized.  The depolarization of the emitted photon is not only affected by the rotation 
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of the fluorophore but can also be affected by the intermolecular excitation transfer and relaxation 

mechanisms.61 

 

Figure 2.11.  General layout of the anisotropy measurement.  The excitation beam is vertically 

polarized (z-axis) by a polarizer and travels along x-axis.  The emissions are detected in the 

perpendicular direction (y-axis).  The emission polarizer is set to parallel (z-axis) or perpendicular 

(x-axis) directions for measurements.  Two associated figures represent the electric filed induced 

dipole and depolarization of emission dipole after certain time.  

 

The basic layout of the anisotropy measurement is given in Figure 2.11.  The sample is excited 

with a vertically polarized light using a polarizer (excitation polarizer) and the emission is detected 

in parallel and perpendicular directions with respect to the excitation using another polarizer 

(emission polarizer).  Let the intensity of emission in parallel and perpendicular directions are 

given by 𝐼∥(𝑡)  and 𝐼⊥(𝑡)  respectively.  The fluorescence anisotropy, 𝑟(𝑡)  at time 𝑡  after the 

excitation of the fluorophore is defined as:61,63 

  
||

||
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I t I t
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+
 (2.39) 
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 For an ensemble of molecules the time-resolved anisotropy given in equation (2.39) can be 

expressed in terms of the average orientation of the molecular transition dipoles.  The time-

dependent angular distribution of the molecular dipoles is given by the rotational diffusion model 

under certain symmetry condition.63-65 Let 𝑊(𝜃, 𝜙, 𝑡) is the probability that a unit dipole �⃗�(𝑡) is 

oriented at (𝜃, 𝜙) at time 𝑡.  The rotational diffusion equation is given by: 

 
( , , ) ˆ ( , , )

W t
HW t

t

 
 


= −


 (2.40) 

where, �̂� = ∑ 𝐿𝑖𝐷𝑖,𝑗𝐿𝑗𝑖,𝑗  is the Hamiltonian of the rotational system, 𝑳 is the angular momentum 

operator  and 𝑫 is the diffusion tensor.63,64 By choosing a suitable coordinate system one can 

transform the Hamiltonian into  �̂� = ∑ 𝐷𝑗𝐿𝑗
2

𝑗  . The solution of the equation (2.40) is given by:61,63 

 

2

0 0 0 0 0 0 0

0 0

( , , ) sin ( , ) ( , | , , )W t d d W G t
 

          =    (2.41) 

where, 𝑊(𝜃0, ϕ0) =
1

4𝜋
[1 + 2𝑃2(cos 𝜃0)], is the initial distribution of the orientation of ensemble 

of randomly oriented dipoles.  𝑃2(𝑥) =
1

2
(3𝑥2 − 1) is the second Legendre polynomial.  

Therefore, we can write: 
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3
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4
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=  (2.42) 

At time 𝑡 = 0, we can assume that the absorption and the emission dipoles are parallel to each 

other.  The normalization condition is given by: 
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The Green’s function 𝐺(𝜃0, 𝜙0|𝜃, 𝜙, 𝑡) accounts for the time evolution of the orientation 

probability 𝑊(𝜃, 𝜙, 𝑡) i.e. the probability that if a dipole is oriented at (𝜃0, 𝜙0) at time 𝑡 = 0, it 

will be oriented at (𝜃, 𝜙) at time 𝑡, and it is given by: 

 
*

0 0 , , 0 0 ,

0

( , | , , ) ( ) ( , ) ( , )
l

l m l m l m

l m l

G t C t Y Y       
 +

= =−

=  (2.44) 

where, 𝑌𝑙,𝑚(𝜃, 𝜙)  are the spherical harmonics and 𝐶𝑙,𝑚(𝑡)  is the time-dependent expansion 

coefficient.  The normalization condition requires that:   

 

2

0 0

0 0

sin ( , | , , ) 1d d G t
 

       =   (2.45) 

and the completeness condition requires that: 
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Therefore, it can be shown that 𝐶𝑙,𝑚(𝑡 = 0) = 1 for all 𝑙 and 𝑚 and 𝐶0,0(𝑡) = 1 at any 

time 𝑡.  Due to the symmetry of rotation, we need to consider the solution only for 𝑙 ≤ 2 and the 

list of spherical harmonics associated with those values of 𝑙 are given below.   
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 Because of the orthogonal properties of the spherical harmonics, the only nonzero term will have 

the coefficient 𝐶0,0 and 𝐶2,0 and therefore we have, 
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Let 𝑓(𝜃, 𝜙, 𝑡) represent an arbitrary time-dependent function of the orientation of the transition 

dipoles.  Since the molecules orient randomly, the ensemble average of the function should be 

given by the spatial average over (𝜃, 𝜙): 
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The intensities of emission at time 𝑡 in parallel and perpendicular directions from a dipole oriented 

at (𝜃, 𝜙) are given by: 
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where, 𝐹(𝑡) is the fluorescence decay function which represents the probability that a molecule is 

in the excited state.  The measured intensities 𝐼∥(𝑡)  and 𝐼⊥(𝑡)  are the ensemble average of 

𝑖∥(𝜃, 𝜙, 𝑡) and 𝑖⊥(𝜃, 𝜙, 𝑡) respectively.  Then using equation (2.49) and equation (2.50) we have: 
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It can also be shown that: 

 
( ) ( )

2

2 2 2,0 2

0 0

2,0

1
(0) ( ) sin (0) ( ) [1 2 ( ) (cos )]

4

                         = ( )

P t d d P t C t P

C t

 

       


 =  +   (2.52) 

Using the definition of fluorescence anisotropy given in equation (2.39) we can have: 
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Since, �⃗�(0) ∙ �⃗�(𝑡) = cos 𝜃, for the unit dipole the above expression can also be written as: 

 ( )2

23 cos 12 2
( ) cos

5 5 2
r t P




 −
 = =
 
 

 (2.54) 

Using the boundary condition 𝐶2,0(𝑡 = 0) = 1, which implies 𝑟(𝑡 = 0) = 2/5, the upper limit of 

the anisotropy.  The limiting values of the anisotropy, 0.4 and -0.2, can also be obtained from 

equation (2.54).  Under the assumptions that the molecules behave like a spherical or symmetric 

rotor and the molecules undergo Brownian motion then anisotropy can be given by:63 
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where 𝐷 = 𝑘𝐵𝑇/6𝑉𝑚𝜂 is the rotational diffusion coefficient.  𝑘𝐵, 𝑇, 𝑉𝑚 and 𝜂 are the Boltzmann 

constant, temperature, molecular volume of the fluorophore and the viscosity of the medium 

respectively.  

The anisotropy is often modeled with a sum of exponential functions for a complex type of 

rotational motion.66 59  
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where 𝜏𝑟
(𝑖)

 and 𝑟0
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 are rotational correlation time and the anisotropy at time 𝑡 = 0 for the 𝑖-th 

component of the complex rotation.  The parallel and the perpendicular component of the intensity 

can be written as:66 
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 (2.57) 

where 𝜏𝐹 denotes the excited state lifetime of the fluorophore.  If the emission polarizer is set to 

an arbitrary angle 𝛼 with respect to the excitation polarized the measured intensity is given by: 

 |

2 2

|( ) cos ( ) sin ( )I t I t I t   ⊥= +  (2.58) 

If the angle 𝛼 is set to 54.7°  (also known as “magic angle”) then the measured intensity is 

proportional to the fluorescence decay function, 𝐹(𝑡), which eliminate the anisotropy effect.18,59  

 ||
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It should be noted that the expression of anisotropy given in equation (2.39) is preferred as 

compared to the polarization, 𝑝(𝑡) = [𝐼∥(𝑡) − 𝐼⊥(𝑡)]/[𝐼∥(𝑡) + 𝐼⊥(𝑡)]  since the anisotropy 

expression normalize the difference between the two intensities with the fluorescence decay 

function and thus eliminated the effect of excited state lifetime on the measurement 

depolarization.59 The experimental scheme presented here also applicable to steady-state 

anisotropy. The sample, however, should be in the solid state for example as film or as in frozen 

solvent.  A correction factor (𝐺) is very often introduced in the anisotropy equation which accounts 

for the anisotropic response of the optics and the detector towards the parallel and perpendicular 

polarization of the light.  The steady-state anisotropy equation with a correction factor can be 

written as:18 
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 (2.60) 

Time-resolved depolarization of the fluorescence can be used to study the rotational motion 

of the molecules in picosecond to nanosecond timescale.  The tools are useful in biological and 

material science to study the structural flexibility of micelles and membranes, molecular 

orientation and rigidity of composites and films.  Both time-resolved and steady-state fluorescence 

anisotropy has been used to study P3HT films in Chapter 7.  
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CHAPTER 3.  WHAT IS THE BEST METHOD TO FIT TIME-RESOLVED DATA?  A 

COMPARISON OF THE RESIDUAL MINIMIZATION AND THE MAXIMUM 

LIKELIHOOD TECHNIQUES AS APPLIED TO EXPERIMENTAL TIME-

CORRELATED, SINGLE-PHOTON COUNTING DATA 

 

A paper published in the Journal of Physical Chemistry B 

Kalyan Santra,1,2 Jinchun Zhan,3 Xueyu Song,1,2 Emily A. Smith,1,2 Namrata Vaswani,3 and 

Jacob W. Petrich*,1,2 

 

3.1  Abstract  

The need for measuring fluorescence lifetimes of species in subdiffraction-limited volumes in, for 

example, stimulated emission depletion (STED) microscopy, entails the dual challenge of probing 

a small number of fluorophores and fitting the concomitant sparse data set to the appropriate 

excited-state decay function.  This need has stimulated a further investigation into the relative 

merits of two fitting techniques commonly referred to as “residual minimization,” RM, and 

“maximum likelihood,” ML.  Fluorescence decays of the well-characterized standard, rose bengal  
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in methanol at room temperature (530 ± 10 ps), were acquired in a set of five experiments in which 

the total number of “photon counts” was approximately 20, 200, 1000, 3000, and 6000; and there 

were from about 2 to 200 counts at the maxima of the respective decays.  Each set of experiments 

was repeated 50 times in order to generate the appropriate statistics.  Each of the 250 data sets was 

analyzed by ML and two different RM methods (differing in the weighting of residuals) using in-

house routines and compared with a frequently-used commercial RM routine.  Convolution with 

a real instrument response function was always included in the fitting.  While RM using Pearson’s 

weighting of residuals can recover the correct mean result with a total number of counts of 1000 

or more, ML distinguishes itself by yielding, in all cases, the same mean lifetime within 2% of the 

accepted value.  For 200 total counts and greater, ML always provides a standard deviation of less 

than 10% of the mean lifetime; and even at 20 total counts there is only 20% error in the mean 

lifetime.  The robustness of ML advocates its use for sparse data sets such as those acquired in 

some subdiffraction-limited microscopies, such as STED, and, more importantly, provides greater 

motivation for exploiting the time-resolved capacities of this technique to acquire and analyze 

fluorescence lifetime data.  

 

3.2  Introduction 

  Time-resolved spectroscopic techniques provide an important portfolio of tools for 

investigating fundamental processes in chemistry, physics, and biology as well as for evaluating 

the properties of a wide range of materials.1,2  One of the most powerful time-resolved techniques 

is that of time-correlated, single-photon counting (TCSPC), which is explained in detail in the texts 

by Fleming1 and O’Conner and Phillips.2  Traditionally, this method requires constructing a 

histogram of arrival time differences between an excitation pulse and pulse resulting from an 
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emitted photon and fitting this histogram to an exponential decay (or perhaps, a sum of exponential 

decays in more complicated systems).  We shall refer to this method of analysis as the Residual 

Minimization technique (RM).  Phase fluorometry is an exception.3-5  The quality of the histogram 

directly determines the quality of the fit, and hence, the accuracy of the extracted decay time.  

Thus, if the sample does not have a high fluorescence quantum yield (number of photons emitted 

per number of photons absorbed), one must collect data for a longer period of time in order to 

obtain a histogram of commensurate quality.  This, however, is not always practical.  For example, 

the sample may not have a high fluorescence quantum yield, or it may degrade after prolonged 

exposure to light.  Figure 3.1 provides examples of such histograms. 

The difficulties cited above are illustrated by a certain class of fluorescence microscopy 

experiments, in particular, those involving subdiffraction-limited spatial resolution, which usually 

require rapid data acquisition times and the use of fluorescent probes that may not be stable at the 

high laser powers that these techniques often require.6,7  The experimental technique also limits 

the probe volume, thus reducing the concentration of excited-state fluorophores, and thereby 

contributing to the reduction of the fluorescence signal.  One of the ways to overcome this is to 

bin the adjacent pixels of the image to increase the number of photons in the time channels.  This, 

however, compromises the spatial resolution, which is clearly undesirable in an experiment whose 

objective is super resolution imaging.  We have recently discussed these difficulties as they pertain 

to stimulated emission depletion (STED) microscopy.7  In particular, a major challenge in STED 

fluorescence lifetime imaging has been, as we have indicated above, collecting a sufficient number 

of photons with which to construct a histogram of photon arrival times from which a fluorescence 

lifetime may be extracted.  We discussed7 the utility of binning time channels in order to convert 

a sparse data set, whose histogram may bear a faint resemblance to an exponential decay, into a 
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histogram that may be fit with sufficient accuracy to an exponential decay with a well-resolved 

time constant.  An example of binning is given in the inset of the 200-count data set of Figure 3.1.  

One difficulty presented by binning time channels, however, is that it reduces the dynamic range 

over which the data are fit and thus renders the accurate determination of a time constant--or 

several time constants in a heterogeneous system--problematic. 

An alternative to RM exists, however, in recognizing that given a certain model for the 

fluorescence decay, there is a well-defined probability of detecting a certain number of photons in 

a given bin (or channel) of the histogram.  The time constant for fluorescence decay can thus be 

extracted by comparing this probability distribution function with the number of photons in the set 

of bins.  In this technique, it is advantageous to maximize the number of bins used to construct the 

histogram.  This method of analysis is referred to as the Maximum Likelihood technique (ML).8  

Here we present a detailed and systematic comparison of RM with ML using the very-well 

characterized dye, rose bengal in methanol, as our standard (Figure 3.1.).  The excited state 

lifetime, τ, at 20°C in methanol is 530 ± 10 ps.1  A more recent study gives 516 ps (with no error 

estimate).9 The fluorescence decay of rose bengal is collected over a total of 1024 bins in a set of 

five experiments in which the total number of arrival times (counts) in all the bins is approximately 

20, 200, 1000, 3000, and 6000, respectively.  Each set of experiments was repeated 50 times in 

order to obtain appropriate statistics.  Each of the 250 fluorescence decays was analyzed using 

both RM and ML.  

Analyzing data via RM and ML methods has, of course, been previously discussed.8,10-29 

With a few exceptions,19,20,22,26 these analyses were limited to simulated data.  Our work has been 

stimulated by the efforts of Maus et al.20, who provided a careful and detailed comparison of the 

RM (to which they refer as LS, “least squares”) and ML methods using experimental data.  Maus 
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et al. used Neyman12,30,31 weighting in their RM analysis.  They find that such weighting 

underestimates the mean lifetime.  In addition, they find that ML effectively generates the correct 

lifetime down to about 1000 total counts, the lowest number of total counts that they considered.  

We have extended their analysis in two significant ways.  In order to push the comparison between 

RM and ML as far as possible, our data sets were designed to be considerably sparser than those 

considered before, ranging from about 2 to 200 counts at the maximum of the respective 

fluorescence decays, whereas those of Maus et al. range from about 60 to 1300.  We note that from 

200 total counts and below, the data bear little or no resemblance to an exponential decay (Figure 

3.1.); and this is precisely where one might expect the distinction between RM and ML to be most 

marked.  We also employ two different methods of weighting residuals in RM, that of Neyman 

and that of Pearson.12,30,31 Our results are consistent with those of Maus et al. in that we also 

observe that Neyman weighting, except in one instance, underestimates the target answer.  We 

find, however, that at 1000 total counts and greater, Pearson weighting affords an acceptable 

answer.  Furthermore, and most importantly, we too find that ML can be an effective analysis tool, 

but that its utility can be extended down to 200 total counts and even fewer.  For example, at 20 

total counts, the correct target lifetime is recovered with 20% error, which in some cases may be 

sufficiently accurate.  Finally, we explicitly point out that the ML method (estimating the 

parameters that maximize the data likelihood under the assumed model) as it is traditionally and 

originally formulated32 yields the exact same maximizers as the modified method introduced by 

Baker and Cousins12 and employed by others,19,20,22,25 which invokes a “likelihood ratio.”  Finally, 

we note for completeness that there are other methods of analysis2,33-37, such as, for example, 

Bayesian33,34, Laguerre expansion35, and Laplace transform2 analyses.  
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3.3  Materials and Methods 

3.3.1  Experimental procedure  

Rose bengal (Sigma) was purified by thin-layer chromatography using silica-gel plates and 

a solvent system of ethanol, chloroform, and ethyl acetate in a ratio of 25:15:30 by volume. 

Solvents were used without further purification. The Rf (retardation factor) value of the pure dye 

in this mixture was approximately 0.51. The purified dye was stored in methanol.  Rose bengal 

absorbs in the region of 460-590 nm.  Time-resolved data were collected using a home-made time-

correlated, single-photon counting (TCSPC) instrument that employs a SPC-830 TCSPC module 

from Becker & Hickl GmbH.  A Fianium pulsed laser (Fianium Ltd, Southampton, UK) operating 

at 570 nm and 2 MHz was used for the excitation of the sample.  Emission was collected using a 

590 nm long-pass filter.  The instrumental response function was measured by collecting scattered 

light at 570 nm from the pure methanol solvent.  The full-width at half-maximum of the instrument 

function was typically ~120 ps.  Sparser data sets were obtained by attenuating the excitation laser 

beam with neutral density filters.  The TCSPC data were collected in 1024 channels, providing a 

time resolution of 19.51 ps/channel, and a full-scale time window of 19.98 ns.  Experiments were 

performed at 19.7 ± 0.2°C.  Five different data sets consisting of 50 fluorescence decays were 

collected with total counts of approximately 20, 200, 1000, 3000, and 6000, respectively.  The 

photon arrival times are used to build histograms comprised of 1024 bins (channels). 

3.3.2  Data analysis 

Modeling the time-correlated, single-photon counting data 

Let tj, j=1, 2,…, 1024 represent the center of the jth bin (or channel); and ϵ=19.51 ps, the 

time width of each bin in the histogram. Then, t1 = ϵ/2, t2 = t1 + ϵ,... tj = t1 + (j-1) ϵ,…,  tmax = t1024 

= t1 + 1023ϵ. Let C(t)={c1, c2,…, c1024} represent the set of counts obtained experimentally in all 
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1024 bins. Similarly, we can have I(t)={ I1, I2,…, I1024} as the set of counts for the experimentally 

measured IRF. We thus assume that the IRF consists of a series of 1024 delta pluses (δ-IRFs) 

having intensity I1, I2,…, I1024, respectively.  

The probability that a photon is detected in the jth bin, pj, is proportional to the convolution 

of the IRF and the model for the fluorescence decay.  
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where,  j0 is given by 𝑏 = 𝑗0𝜖.  b is a linear shift between the instrument response function and the 

fluorescence decay. This shift parameter is necessary because the lower energy (“redder”) 

fluorescence photons travel at a different speed through dispersive optics than the higher energy 

(“bluer”) excitation photons that are used to generate the IRF in a scattering experiment.1,38,39 

The probability that a photon is detected in the range 𝑡1 ≤  𝑡 ≤ 𝑡𝑚𝑎𝑥 =  𝑡1024   must 

be ∑ 𝑝𝑗𝑗 = 1.  We have, therefore: 

 

0 00 0

0 00 0

1 1

1024 1024

1 1 1 1

j j i j j i

j j i k j i

t t t tj j j j

i i

i i

j t t t tj j k j

i i

j i k i

I e I e

p

I e I e

 

 

− −

− −

− −− −
− −

= =

− −− −
− −

= = = =

= =
   
   
   
   

 

   

 (3.2) 

The denominator acts as the normalization factor for the probability and it is independent of the 

index j.  We can, therefore, change the dummy index, j, to another dummy index, k, for clarity, 

while retaining j0, as this is a constant unknown shift applied for all bins.  The denominator is 

proportional to the total convoluted counts generated from the IRF.  

Let ĉj represent the number of predicted counts from the single-exponential model in the 

jth bin, taking into account convolution. The number of predicted counts in a given bin is directly 
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proportional to the probability that a photon is detected in that bin: ĉj ∝ pj.  Thus, the sequence {ĉ1, 

ĉ2,…, ĉ1024} is the predicted data for a decay. The area under the decay curves obtained from the 

observed counts C(t) and from the predicted counts Ĉ(t) must be conserved during optimization of 

the fitting parameters. In other words, the total number of predicted counts must be equal to the 

total number of observed photon counts.  Therefore, the number of predicted counts in the jth bin 

is given by: 
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where CT = ∑j cj .  

  Finally, we note that the shift parameter, b, need not be an integral multiple of ϵ. If we 

assume that b can take continuous values, then we can always find an integer, j0, such that b = j0ϵ 

+ ζ, where ζ lies between 0 and ϵ, the time width of the bin. The probability, pj, and predicted 

number of counts, ĉj, are thus given by: 
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 (3.4) 

Residual minimization method (RM) 

In this method, the sum of the squares of the residuals, as given in equation (3.5), is 

minimized over the parameters, τ and b, to obtain the optimal values.  
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It is well established that minimization of the weighted square of the residuals provides a better fit 

than minimization of the unweighted square of the residuals.12,19,40 We, therefore, construct a 

weighted square of the residuals:  
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where wj is the weighting factor. Depending on the choice of  wj, equation (3.6) often takes the 

form of the classical chi squared, for example :12,16,19,20,25,30,31,40  
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The reduced χ2 is obtained by dividing by the number of degrees of freedom: 
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where n is the number of data points; and p, the number of parameters and constraints in the model. 

For example, in our case we have 1024 data points, two parameters (τ and b), and one constraint, 

CT = ĈT. This gives n – p =1021. For an ideal case, 𝜒𝑟𝑒𝑑
2   will be unity; and 𝜒𝑟𝑒𝑑

2 < 1 signifies 

overfitting the data.  Therefore, the closer 𝜒𝑟𝑒𝑑
2  is to unity (without being less than unity), the better 

the fit. The program is run so as to vary τ and b in such a manner as to minimize 𝜒𝑟𝑒𝑑
2 . 
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Maximum likelihood method (ML) 

The total probability of having a sequence {c1, c2,…, c1024} subject to the condition, CT = 

∑j cj , follows the multinomial distribution: 
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We can define a likelihood function as the joint probability density function above:  ℒ( �̂�, 𝑐)  =

𝑃𝑟(𝑐1, 𝑐2, ⋯ , 𝑐1024). 

Substituting the expression for the probability using equation (3.4), we have: 
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Following the treatment of Baker and Cousins,12 we let {c'} represent the true value of {c} given 

by the model.  A likelihood ratio, λ, can be defined as:  

 ˆ( , ) / ( , )c c c c =  (3.12) 

According to the likelihood ratio test theorem,20,25,41,42 the “likelihood χ2” is defined by 

 
2 2ln = −  (3.13) 

which obeys a chi-squared distribution as the sample size (or number of total counts) increases.   

For the multinomial distribution, we may replace the unknown {c'} by the experimentally 

observed {c}.12  This gives: 
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And the “likelihood χ2” becomes:  
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The minimization of the “likelihood χ2,” described in equation (3.15) , is thus performed to obtain 

the optimum values of τ and b. 

It is important to stress that the form of the maximum likelihood method given in equation 

(3.10) is used widely by statisticians 32 and that equation (3.15), popularized by Baker and 

Cousins12 and used in several instances to fit photon-counting data 19,20,22,25 is formally identical 

to it, as Baker and Cousins themselves point out. Namely, maximizing equation (3.10) is 

equivalent to minimizing equation (3.15). Specifically, from equation (3.10): 

 
1024

1 2 1024

1

( )
( , , ) !

!

jc

j

T

j j

p
Pr c c c C

c=

 =    

 

1024 1024

1 2 1024

1 1

ˆln ( , , ) . ln . lnj j j j

j j

Pr c c c const c p const c c
= =

 = + = +    

since, 𝑝𝑗 = �̂�𝑗/𝐶𝑇. The const. includes the terms involving only CT or cj, as they are experimentally 

observed numbers and independent of the parameters τ and b.  From equation (3.15): 
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Again the const. includes the terms which are independent of the parameters τ and b. equation 

(3.10) may be considered to be simpler in form than equation (3.15) and, for some models, may 

prove to be less computationally expensive as well.  

For completeness, we mention the Bayesian analysis, which offers another approach in 

terms of a likelihood function.  The Bayesian analysis starts with a prior distribution of the 

parameters in the appropriate range.  The “posterior distribution” is calculated using the likelihood 

of the observed distribution for a given “prior distribution.”33,34  In the case of our model system, 

let P(τ,b) represent the prior distribution of the parameters.  We can write the likelihood of having 

an observed distribution, {c}={c1, c2,…, c1024}, subject to the prior distribution as Pr({c}| τ,b). 

Therefore, the posterior distribution is given by: 
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where the denominator is acting as the normalization factor. Maximization of the posterior 

distribution will furnish the desired value of the parameters.  The results are often greatly affected 

by the choice of the prior distribution. Usually the prior distribution is chosen in such a way that 

the entropy of the distribution is maximized.   

Computational tools 

The RM and ML analyses described above are performed using codes written in 

MATLAB. We employ the GlobalSearch toolbox, which uses the “fmincon” solver. In each 

calculation, a global minimum was found.  Finally, for comparison, the data were also analyzed 

with the proprietary SPCImage software v. 4.9.7 (SPCI), provided by Becker & Hickl GmbH.  As 

this program is based upon a method of RM, it should, in principle, perform identically to our in-

house code.  In all the fitting comparisons to be discussed, there are only two variable parameters, 
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the lifetime (τ), and the shift parameter (b), see below.  With our in-house routines, we 

experimented with different initial values of the lifetime and shift parameters, ranging from 0.3 to 

0.7 ns and from -0.02 to 0.02 ns, respectively.  In all cases, we retrieved the same fit results through 

the third decimal place.   

 

3.4  Results and Discussion 

Each of the 250 fluorescence decays for the five sets of data (taken with approximately 20, 200, 

1000, 3000, and 6000 total counts) is analyzed by the four methods described above:  ML; RM-

Neyman; RM-Pearson; and the commercial SPCI. As noted, the ML results obtained from equation 

(3.10) and equation (3.15) are formally identical; and the fits obtained using the two equations 

yield the same results.  Figure 3.1. presents a sample decay from each of the five data sets.  Figure 

3.2(a) provides a scatter plot of each lifetime obtained for each method of fitting.  The horizontal 

red dashed line represents the value of a recently acquired lifetime of rose bengal in methanol at 

room temperature of 516 ps,9 which we use as reference.  Histograms of lifetimes obtained for the 

different fitting methods are presented in Figures 3.2(b)-(f).  The mean (average) lifetime plus or 

minus one standard deviation, < 𝜏 > ± 𝜎, obtained from the results are computed and summarized 

in Table 3.1. 

The salient results are the following.  Concerning the RM methods, we note that because 

the SPCI source code is not available, the details of the differences arising between it and our code 

cannot be determined.  One noticeable and important difference between SPCI and our RM (Table 

3.1) is that SPCI does not converge for the 20-total-counts data set.  On the other hand, our RM-

Neyman and RM-Pearson methods fit the data in all cases, but with varying degrees of success.  

Except for the case of 200 counts, RM-Neyman consistently underestimates the target value.  For 



www.manaraa.com

83 

 

200 counts, all RM methods overestimate the target value, and SPCI yields an aberrant result of 

600 ± 700 ps.  From 1000 counts onward, RM-Pearson provides results close to those of the target 

value and similar to those of SPCI.  RM-Pearson appears to be more robust and reliable than either 

RM-Neyman or SPCI. 

In contrast, at 20 counts, ML yields 500 ± 100 ps, which brackets the target result and 

which is to be compared with 320 ± 30 ps for RM-Neyman and with 460 ± 70 ps for RM-Pearson.  

For 200 total counts and greater, ML always provides an acceptable result with a standard deviation 

of less than 10% of the mean lifetime.  The RM techniques achieve this level of precision only as 

of 1000 counts; and, as mentioned above, RM-Neyman generally underestimates the target value.  

Perhaps the most significant difference among the ML and the RM methods is that ML, within 

2%, always produces the same mean lifetime, whereas this is not the case for RM, especially for 

total counts of 1000 and less.   

In the Introduction, we commented on the careful comparison of the RM and ML methods 

by Maus et al.20 and noted that our results presented here are not only consistent with theirs but 

also suggest that the ML method can be extended to considerably fewer counts than they explored 

in their study.  We summarize some of the more important differences between our work and that 

of Maus et al.   

1.  Our data sets were designed to be considerably sparser than those considered before, 

ranging from about 2 to 200 counts at the maximum of the respective fluorescence decays, whereas 

those of Maus et al. range from about 60 to 1300.  From 200 total counts and below, the data bear 

little or no resemblance to an exponential decay (Figure 3.1.); and this is precisely where one 

might expect the distinction between RM and ML to be the greatest—and the most useful.  
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2.  Maus et al. use only 180 time channels (140 ps/channel) to study a molecule 

(hexaphenylbenzene-perylenemonoimide) whose lifetime is ~4500 ps, whereas we have used 1024 

time channels (19.51 ps/channel) to study rose bengal, whose lifetime is ~530 ps.  In other words, 

our experimental conditions (both the time window and the excited-state lifetime under 

consideration) are determined to distribute the data over as many time channels as possible in order 

to minimize the effects of time-binning, which we have discussed elsewhere7 and to highlight 

instances where the differences between ML and RM might be the most pronounced.   

3.  There are some subtle but significant differences in the details of the fitting procedures.  

For example, we argue that it is necessary to conserve the total number of counts (which is 

proportional to the area under the fitted curve) during the optimization process.  Maus et al., 

however, permit the amplitude (our total counts) to vary for RM but keep it fixed for ML.  Also, 

all of our fitting comparisons involve two variable parameters, the lifetime and the shift, τ and b.  

Maus et al. only have one variable parameter for ML, τ; but they employ two for RM, τ and the 

amplitude.  We suggest that a close comparison between the methods should maintain as many 

similarities as possible. 

In addition, we note that Köllner and Wolfrum8 have discussed the use of ML.  They 

suggested, based on simulations (some including 20% of a constant background), that one needs 

to have at least 185 photon counts in a time window of 8 ns with 256 time channels to measure a 

2.5-ns lifetime with 10% variance without background.   

 

3.5  Conclusions 

We have performed a comparison of the maximum likelihood (ML) and residual 

minimization (RM) fitting methods by applying them to experimental data incorporating a 
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convoluted instrument function.  While RM using Pearson’s weighting of residuals can recover 

the correct mean result with a total number of counts of 1000 or more, ML distinguishes itself by 

yielding, in all cases, the same mean lifetime within 2% of the accepted value.  For total counts of 

200 and higher, ML always provides a standard deviation of less than 10% of the mean lifetime.  

Even at 20 total counts, ML provides a 20% error.  The robustness of ML advocates its use for 

sparse data sets such as those acquired in some subdiffraction-limited microscopies, such as STED, 

and, more importantly, provides greater motivation for exploiting the time-resolved capacities of 

this technique to acquire and analyze fluorescence lifetime data.  

 

3.6  Acknowledgments 

We thank Mr. Ujjal Bhattacharjee for assistance in the early stages of this work. The work 

performed by K. Santra, E. A. Smith, and J. W. Petrich was supported by the U.S. Department of 

Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and 

Biosciences through the Ames Laboratory.  The Ames Laboratory is operated for the U.S. 

Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. X. 

Song was supported by The Division of Material Sciences and Engineering, Office of Basic Energy 

Sciences, U.S. Department of Energy, under Contact No. W-7405-430 ENG-82 with Iowa State 

University. The work of J. Zhan and N. Vaswani was partly supported by grant CCF-1117125 

from the National Science Foundation. 

  



www.manaraa.com

86 

 

3.7  References   

1.  Fleming, G. R. Chemical Application of Ultrafast Spectroscopy Oxford University Press: New 

York, 1986. 

2.  O'Connor, D. V.; Phillips, D. Time Correlated Single Photon Counting Academic Press Inc.: 

London, 1984. 

3.  Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: 2011. 

4.  Stringari, C.; Cinquin, A.; Cinquin, O.; Digman, M. A.; Donovan, P. J.; Gratton, E. Phasor 

Approach to Fluorescence Lifetime Microscopy Distinguishes Different Metabolic States of Germ 

Cells in a Live Tissue. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (33), 13582-13587. 

5.  Colyer, R. A.; Lee, C.; Gratton, E. A Novel Fluorescence Lifetime Imaging System That 

Optimizes Photon Efficiency. Microsc. Res. Techniq. 2008, 71 (3), 201-213. 

6.  Lesoine, M. D.; Bose, S.; Petrich, J. W.; Smith, E. A. Supercontinuum Stimulated Emission 

Depletion Fluorescence Lifetime Imaging. J. Phys. Chem. B. 2012, 116 (27), 7821-7826. 

7.  Syed, A.; Lesoine, M. D.; Bhattacharjee, U.; Petrich, J. W.; Smith, E. A. The Number of 

Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images. 

Photochem. Photobiol. 2014, 90 (4), 767-772. 

8.  Köllner, M.; Wolfrum, J. How Many Photons Are Necessary for Fluorescence-Lifetime 

Measurements? Chem. Phys. Lett. 1992, 200 (1), 199-204. 

9.  Luchowski, R.; Szabelski, M.; Sarkar, P.; Apicella, E.; Midde, K.; Raut, S.; Borejdo, J.; 

Gryczynski, Z.; Gryczynski, I. Fluorescence Instrument Response Standards in Two-Photon Time-

Resolved Spectroscopy. Appl. Spectrosc. 2010, 64 (8), 918-922. 

10.  Ankjærgaard, C.; Jain, M.; Hansen, P. C.; Nielsen, H. B. Towards Multi-Exponential Analysis 

in Optically Stimulated Luminescence. J. Phys. D: Appl. Phys. 2010, 43 (19), 195501. 

11.  Bajzer, Ž.; Therneau, T. M.; Sharp, J. C.; Prendergast, F. G. Maximum Likelihood Method 

for the Analysis of Time-Resolved Fluorescence Decay Curves. Eur. Biophys. J. 1991, 20 (5), 247-

262. 



www.manaraa.com

87 

 

12.  Baker, S.; Cousins, R. D. Clarification of the Use of Chi-Square and Likelihood Functions in 

Fits to Histograms. Nucl. Instr. Meth. Phys. Res. 1984, 221 (2), 437-442. 

13.  Bevington, P.; Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences, 

3rd ed.; McGraw-Hill: New York, 2002. 

14.  Grinvald, A.; Steinberg, I. Z. On the Analysis of Fluorescence Decay Kinetics by the Method 

of Least-Squares. Anal. Biochem. 1974, 59 (2), 583-598. 

15.  Hall, P.; Selinger, B. Better Estimates of Exponential Decay Parameters. J. Phys. Chem. 1981, 

85 (20), 2941-2946. 

16.  Hauschild, T.; Jentschel, M. Comparison of Maximum Likelihood Estimation and Chi-Square 

Statistics Applied to Counting Experiments. Nucl. Instr. Meth. Phys. Res. A. 2001, 457 (1), 384-

401. 

17.  Hinde, A. L.; Selinger, B.; Nott, P. On the Reliability of Fluorescence Decay Data. Aust. J. 

Chem. 1977, 30 (11), 2383-2394. 

18.  Kim, G.-H.; Legresley, S. E.; Snyder, N.; Aubry, P. D.; Antonik, M. Single-Molecule Analysis 

and Lifetime Estimates of Heterogeneous Low-Count-Rate Time-Correlated Fluorescence Data. 

Appl. Spectrosc. 2011, 65 (9), 981-990. 

19.  Laurence, T. A.; Chromy, B. A. Efficient Maximum Likelihood Estimator Fitting of 

Histograms. Nat. Methods. 2010, 7 (5), 338-339. 

20.  Maus, M.; Cotlet, M.; Hofkens, J.; Gensch, T.; De Schryver, F. C.; Schaffer, J.; Seidel, C. An 

Experimental Comparison of the Maximum Likelihood Estimation and Nonlinear Least-Squares 

Fluorescence Lifetime Analysis of Single Molecules. Anal. Chem. 2001, 73 (9), 2078-2086. 

21.  Moore, C.; Chan, S. P.; Demas, J.; DeGraff, B. Comparison of Methods for Rapid Evaluation 

of Lifetimes of Exponential Decays. Appl. Spectrosc. 2004, 58 (5), 603-607. 

22.  Nishimura, G.; Tamura, M. Artefacts in the Analysis of Temporal Response Functions 

Measured by Photon Counting. Phys. Med. Biol. 2005, 50 (6), 1327. 

23.  Periasamy, N. Analysis of Fluorescence Decay by the Nonlinear Least Squares Method. 

Biophys. J. 1988, 54 (5), 961-967. 



www.manaraa.com

88 

 

24.  Sharman, K. K.; Periasamy, A.; Ashworth, H.; Demas, J. Error Analysis of the Rapid Lifetime 

Determination Method for Double-Exponential Decays and New Windowing Schemes. Anal. 

Chem. 1999, 71 (5), 947-952. 

25.  Turton, D. A.; Reid, G. D.; Beddard, G. S. Accurate Analysis of Fluorescence Decays from 

Single Molecules in Photon Counting Experiments. Anal. Chem. 2003, 75 (16), 4182-4187. 

26.  Tellinghuisen, J.; Goodwin, P. M.; Ambrose, W. P.; Martin, J. C.; Keller, R. A. Analysis of 

Fluorescence Lifetime Data for Single Rhodamine Molecules in Flowing Sample Streams. Anal. 

Chem. 1994, 66 (1), 64-72. 

27.  Enderlein, J.; Köllner, M. Comparison between Time‐Correlated Single Photon Counting and 

Fluorescence Correlation Spectroscopy in Single Molecule Identification. Bioimaging. 1998, 6 (1), 

3-13. 

28.  Bialkowski, S. E. Data Analysis in the Shot Noise Limit. 1. Single Parameter Estimation with 

Poisson and Normal Probability Density Functions. Anal. Chem. 1989, 61 (22), 2479-2483. 

29.  Bialkowski, S. E. Data Analysis in the Shot Noise Limit. 2. Methods for Data Regression. 

Anal. Chem. 1989, 61 (22), 2483-2489. 

30.  Neyman, J.; Pearson, E. S. On the Use and Interpretation of Certain Test Criteria for Purposes 

of Statistical Inference: Part I. Biometrika. 1928, 20A (1/2), 175-240. 

31.  Neyman, J.; Pearson, E. S. On the Use and Interpretation of Certain Test Criteria for Purposes 

of Statistical Inference: Part II. Biometrika. 1928, 20A (3/4), 263-294. 

32.  Poor, H. V. An Introduction to Signal Detection and Estimation, 2nd ed.; Springer: 1994. 

33.  Barber, P.; Ameer-Beg, S.; Pathmananthan, S.; Rowley, M.; Coolen, A. A Bayesian Method 

for Single Molecule, Fluorescence Burst Analysis. Biomed. Opt. Express. 2010, 1 (4), 1148-1158. 

34.  Rowley, M. I.; Barber, P. R.; Coolen, A. C.; Vojnovic, B. Bayesian Analysis of Fluorescence 

Lifetime Imaging Data. SPIE BiOS International Society for Optics and Photonics: 2011, 790325-

790325-790312. 



www.manaraa.com

89 

 

35.  Jo, J. A.; Fang, Q.; Marcu, L. Ultrafast Method for the Analysis of Fluorescence Lifetime 

Imaging Microscopy Data Based on the Laguerre Expansion Technique. IEEE J. Sel. Top. 

Quantum Electron. 2005, 11 (4), 835-845. 

36.  Večeř, J.; Kowalczyk, A.; Davenport, L.; Dale, R. Reconvolution Analysis in Time-Resolved 

Fluorescence Experiments--an Alternative Approach: Reference-to-Excitation-to-Fluorescence 

Reconvolution. Rev. Sci. Instrum. 1993, 64 3413-3424. 

37.  Istratov, A. A.; Vyvenko, O. F. Exponential Analysis in Physical Phenomena. Rev. Sci. 

Instrum. 1999, 70 (2), 1233-1257. 

38.  Calligaris, F.; Ciuti, P.; Gabrielli, I.; Giamcomich, R.; Mosetti, R. Wavelength Dependence 

of Timing Properties of the Xp 2020 Photomultiplier. Nucl. Instr. Meth. 1978, 157 (3), 611-613. 

39.  Sipp, B.; Miehe, J.; Lopez-Delgado, R. Wavelength Dependence of the Time Resolution of 

High-Speed Photomultipliers Used in Single-Photon Timing Experiments. Opt. Commun. 1976, 

16 (1), 202-204. 

40.  Jading, Y.; Riisager, K. Systematic Errors in Χ 2-Fitting of Poisson Distributions. Nucl. Instr. 

Meth. Phys. Res. A. 1996, 372 (1), 289-292. 

41.  Wilks, S. The Likelihood Test of Independence in Contingency Tables. Ann. Math. Stat. 1935, 

6 (4), 190-196. 

42.  Wilks, S. S. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite 

Hypotheses. Ann. Math. Stat. 1938, 9 (1), 60-62. 

 

 

  



www.manaraa.com

90 

 

3.8  Tables and Figures 

Table 3.1.  

 Mean lifetime ± One Standard Deviation (ps) Associated with Each Method of Analysis ML, 

maximum likelihood method; RM-Neyman, residual minimization method weighting the 

residuals by 1/cj, where cj is the number of counts in a channel (equation (3.8)); RM- Pearson, 

residual minimization method weighting the residuals by 1/ ĉj, where ĉj is the predicted number 

of counts in a channel (equation (3.7)); SPCI, commercially supplied residual minimization 

software. 

 

Total counts ML RM SPCI 

  Neyman Pearson  

20 500 ± 100 320 ± 30 460 ± 70  

200 510 ±  40  690 ± 20 600 ± 50 600 ± 700 

1000 510 ±  20  490 ± 30 560 ± 20 520 ±  30 

3000 510 ±  10 480 ± 20 540 ± 10 520 ±  20 

6000 501 ±   8 480 ± 10 520 ± 20  520 ±  10 
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Figure 3.1.  A representative histogram for a given number of total counts is presented.  Each 

panel gives the raw data (black), the instrument response function (IRF, red), the ML fit (green), 

the RM-Neyman fit (magenta), the RM-Pearson fit (blue), and the SPCI fit (orange).  The inset in 

the 200-count panel gives the result of binning four contiguous time channels, reducing the number 

from 1024 to 256.  The inset in the 1000-count panel presents the structure of the sodium salt of 

rose bengal. 
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Figure 3.2.  Estimated lifetime of rose bengal by ML (green), RM-Neyman (magenta), RM-

Pearson (blue) and SPCI (orange). (a) The scatter plot of the lifetime with respect to the total counts 

in a decay.  (b)-(f) Histograms of the lifetimes obtained by the above four methods for total counts 

of 20, 200, 1000, 3000, and 6000 respectively.  The bins for all of the histograms are 10 ps wide.  

The red dashed lines give, as a benchmark, a recent value of 𝜏 =  516 ps.9   
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CHAPTER 4.  PHOTON COUNTING DATA ANALYSIS:  APPLICATION OF THE 

MAXIMUM LIKELIHOOD AND RELATED METHODS FOR THE DETERMINATION 

OF LIFETIMES IN MIXTURES OF ROSE BENGAL AND RHODAMINE B  

 

A paper published in the Journal of Physical Chemistry A 

Kalyan Santra, Emily A. Smith, Jacob W. Petrich, and Xueyu Song* 

 

4.1  Abstract  

It is often convenient to know the minimum amount of data needed in order to obtain a 

result of desired accuracy and precision. It is a necessity in the case of subdiffraction-limited 

microscopies, such as stimulated emission depletion (STED) microscopy, owing to the limited 

sample volumes and the extreme sensitivity of the samples to photobleaching and photodamage. 

We present a detailed comparison of probability-based techniques (the maximum likelihood 

method and methods based on the binomial and the Poisson distributions) with residual 

minimization-based techniques for retrieving the fluorescence decay parameters for various two-

fluorophore mixtures, as a function of the total number of photon counts, in time-correlated, single- 
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photon counting experiments. The probability-based techniques proved to be the most robust 

(insensitive to initial values) in retrieving the target parameters and, in fact, performed equivalently 

to 2-3 significant figures. This is to be expected, as we demonstrate that the three methods are 

fundamentally related.  Furthermore, methods based on the Poisson and binomial distributions 

have the desirable feature of providing a bin-by-bin analysis of a single fluorescence decay trace, 

which thus permits statistics to be acquired using only the one trace for not only the mean and 

median values of the fluorescence decay parameters but also for the associated standard deviations. 

These probability-based methods lend themselves well to the analysis of the sparse data sets that 

are encountered in subdiffraction-limited microscopies.  

 

4.2  Introduction 

Time-resolved spectroscopic techniques have a wide range of applications in the physical 

and biological sciences.  Owing to, for example, its ease of use, high sensitivity, large dynamic 

range, applicability to imaging and subdiffraction-limited microscopies, one of the most widely 

used techniques is time-correlated, single-photon counting (TCSPC).1,2 A major challenge in 

analyzing the data obtained in these experiments arises from sparse data sets, such as those that 

may often be encountered in super-resolution microscopies, such as stimulated emission depletion 

(STED) microscopy.3-6  Typically, in a TCSPC experiment, a fluorescence lifetime is determined 

by acquiring a histogram of arrival time differences between an excitation pulse and the pulse 

resulting from a detected photon.  As we have noted, 3,4 when a histogram of sufficient quality 

cannot be obtained to provide a good fit by means of minimizing the residuals (RM) between the 

experimental data and a given functional form, the maximum likelihood (ML) technique is 

particularly effective, namely when the total number of counts is very low.3  As we have shown in 
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the case of rose bengal, ML retrieved the correct mean lifetime to within 2% of the accepted value 

with total counts as low as 20; and it retrieved the correct mean lifetime with less than 10% 

standard deviation with total counts as low as 200. 

There are several comparisons of the ML and RM techniques,7-27 but most of them have 

been limited to simulated data.  In those cases where the techniques were applied to real 

experimental data,  the comparisons were limited by several factors such as the exclusion of a real 

instrument response function (IRF), the bin size for the time channels of the histogram, the 

exclusion of a shift parameter that accounts for the wavelength difference between the instrument 

response function and the fluorescence signal, and, most importantly, by not determining the 

minimum number of counts at which the respective techniques provide an acceptable result.  In 

our recent work,3 we addressed all of these issues for a single fluorophore, rose bengal.  Here, we 

extend these efforts by studying mixtures of fluorophores, which is more relevant to the type of 

data that can be extracted from a STED experiment capable of extracting fluorescence lifetimes.6  

In such experiments, heterogeneity in the lifetimes of the emitting fluorophores is expected; and 

such heterogeneity can provide insight into the processes being probed in the subdiffraction-

limited spot under interrogation.  To this end, we examined mixtures of the well-characterized 

dyes, rose bengal (Rb) and rhodamine B (RhB), in methanol.  The excited-state lifetime, 𝜏, of Rb 

is 0.49 ± 0.01  ns.3  Some reported values are 0.53 ± 0.01  ns1 and 0.512 ns,28 with no error 

estimate.  We have measured the excited-state lifetime of RhB to be 2.45 ± 0.01 ns.  Reported 

values are 2.42 ± 0.08 ns,29 2.3 ns,30 and 2.6 ns31 in methanol at room temperature.  We studied 

five different sets of mixtures with varying compositions.  The fluorescence decays were collected 

over a total of 1024 bins (channels).  The fluorescence decay of each of the five sets of mixtures 
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was collected fifty times, with a total number of counts of 20, 100, 200, 500, 1000, 3000, 6000, 

10000, and 20000.  Thus, a total of 2250 fluorescence decay profiles were analyzed.  

We furthermore examined the performance and utility of other methods related to ML.  For 

example, though analysis of fifty decays gives sufficient statistics to retrieve the two lifetime and 

amplitude components of the fluorescence decay using the ML method (or the RM method under 

certain conditions), in a subdiffraction-limited imaging experiment it is usually not practical to 

perform multiple measurements of the same sample.  These other methods are related to ML in 

that they are based on the binomial and Poisson distributions and have the interesting and useful 

properties of yielding statistics from only one measurement of the fluorescence decay.  In 

particular, since we know that there is a well-defined probability that a certain number of photons 

will be accumulated in a given bin of the histogram, we can apply a Poisson distribution or a 

binomial distribution to the random arrival of photons to estimate the decay constant of the sample 

by analyzing only one bin.  Therefore, photon counts in each bin will furnish a decay constant 

corresponding the position of the bin.  We, thus, demonstrate the ability to analyze a single 

experimental fluorescence decay within a given range of accuracy while at the same time providing 

statistics. 

 

4.3  Materials and Methods 

4.3.1  Experimental procedure  

Rose bengal (Rb) and rhodamine B (RhB) were obtained from Sigma and Eastman, 

respectively, and were purified by thin-layer chromatography using silica-gel plates and a solvent 

system of ethanol, chloroform, and ethyl acetate in a ratio of 25:15:30 by volume.  Solvents were 

used without further purification. The purified dyes were stored in methanol in the dark.  Rb 
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absorbs in the region 460-590 nm; RhB, 440-590 nm.  550 nm was thus selected as the excitation 

wavelength.  Five sets of samples were prepared so that they had an absorption ratio of Rb:RhB at 

550 nm of:  100:0; 75:25; 50:50; 25:75; and 0:100 respectively.  The net absorbance of each of the 

five solutions was kept near 0.3 (Figure 4.1a).  Time-resolved data were collected using a home-

made, time-correlated, single-photon counting (TCSPC) instrument using a SPC-630 TCSPC 

module (Becker & Hickl GmbH).  A collimated Fianium pulsed laser (Fianium Ltd, Southampton, 

UK) at a 2 MHz repetition rate, was used to excite the sample at 550 nm.  The excitation beam 

was vertically polarized.  Emission was detected at the “magic angle” (54.7°) with respect to the 

excitation using a 590-nm, long-pass filter (Figure 4.1b).  The instrument response function (IRF) 

was measured by collecting scattered light at 550 nm (without the emission filter) from the pure 

methanol solvent.  The full-width at half-maximum of the instrument function was typically ~120 

ps.  The TCSPC data were collected in 1024 channels (bins), providing a time resolution of 19.51 

ps/channel, and a full-scale time window of 19.98 ns. Nine different data sets consisting of 50 

fluorescence decays were collected with a total number of counts of approximately 20, 100, 200, 

500, 1000, 3000, 6000, 10000, and 20000, respectively. 

4.3.2  Data analysis 

Modeling the time-correlated, single-photon counting data 

When there is more than one emitting species, a multi-exponential model can be applied: 
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where ∑𝑎𝑛 = 1; and 𝑎𝑛 are the fractions of the nth species in the sample mixture.  In the case of 

the two-component system of Rb and RhB:   
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where 𝜏1 and 𝜏2 are the lifetimes of the two species, and 𝑎1 is the fraction of the species with 

lifetime 𝜏1. 

Let 𝒕 = {𝑡1, 𝑡2, … , 𝑡1024} represent the time axis, where the center of the jth bin (or channel) 

is given by 𝑡𝑗 ; and 𝜖 = 19.51  ps is the time width of each bin in the histogram.  Let 𝑪 =

 {𝑐1, 𝑐2, … , 𝑐1024} be the set of counts obtained in the 1024 bins.  Similarly, we experimentally 

measure the instrument response function (IRF) and represent it as 𝑰 =  { 𝐼1, 𝐼2, … , 𝐼1024}, where 

the 𝐼𝑗 are the number of counts in the jth bin.  

The probability that a photon is detected in the jth bin, 𝑝𝑗, is proportional to the discrete 

convolution of the IRF and the model for the fluorescence decay given in equation (4.2).  

 

0 0

1 2

0 0

0

( ) (

1

1

1

1

)

( ) (1 )

j j i j j ij j j j

j i i

t t t t

j j

i i

iF t aIt ap I e e 

− −− − −
−

−
−

= =

−

 
 −


 

 = + −


   (4.3) 

where,  j0 is given by 𝑏 = 𝑗0𝜖.  The parameter b describes the linear shift between the instrument 

response function and the fluorescence decay.1,3,32,33  The probability that a photon is detected in 

the range 𝑡1 ≤  𝑡 ≤ 𝑡𝑚𝑎𝑥 =  𝑡1024  must be ∑ 𝑝𝑗𝑗 = 1.  We have, therefore: 
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 (4.4) 

The normalization factor in the denominator is independent of the index, j; and, hence, the “dummy 

index,” k, is inserted while retaining j0, as this constant, unknown shift applies for all bins.  The 

denominator is proportional to the total number of convoluted counts generated with the IRF.  
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Let ĉj represent the number of predicted counts from the multi-exponential model in the jth 

bin, taking into account convolution. The number of predicted counts in a given bin is directly 

proportional to the probability that a photon is detected in that bin: ĉj ∝ pj.  Thus, we can write the 

predicted counts as  �̂�  = {�̂�1, �̂�2, … , �̂�1024}.  The area under the decay curves obtained from the 

observed counts 𝑪 and from the predicted counts �̂� must be conserved during optimization of the 

fitting parameters.  In other words, the total number of predicted counts must be equal to the total 

number of observed photon counts.  The number, therefore, of predicted counts in the jth bin is 

given by: 
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where 𝐶𝑇 = ∑ 𝑐𝑗𝑗  .  It should be noted that in the above equation we allowed the shift parameter, 

b, to assume continuous values. Therefore, we always find an integer, j0, such that b = j0ϵ + ζ, 

where ζ lies between 0 and ϵ, the time width of the bin.  In the case of a single-exponential model, 

the expressions for the probability, pj, and the predicted number of counts, ĉj are obtained by 

substituting 𝑎1 = 1:  
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Residual minimization method (RM) 

The traditional method of RM uses the sum of the square of the differences (residuals) 

between the experimentally obtained counts and the predicted counts to optimize the fit.  It is also 

well known9,20,34 that minimization of the weighted square of the residuals provides a better fit 

than does the unweighted square of the residuals.  We, therefore, used the sum of the weighted 

squares of the residuals and minimized it over the parameters, 𝜏1 , 𝜏2 , 𝑎1  and b, to obtain the 

optimal values:  

 
2ˆ( )w j j j

j

S w c c= −  (4.7) 

where wj is the weighting factor.  Depending on the choice of wj, equation (3.6) can take the 

following forms of the classical chi-squared (χ2), for example:9,16,20,21,27,34-36 
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The reduced χ2 is obtained by dividing by the number of degrees of freedom: 

  
2 21
red

n p
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−
 (4.10) 

where n is the number of data points; and p, the number of parameters and constraints in the model. 

For example, in our case we have 1024 data points, two or four parameters (𝜏1, 𝑏 or 𝜏1, 𝜏2, 𝑎1, 𝑏) 

depending on whether one or two exponentials are used to describe the decay, and one constraint, 
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𝐶𝑇 = �̂�𝑇.  This gives n – p = 1021 or 1019, respectively.  For an ideal case, 𝜒𝑟𝑒𝑑
2  is unity.  𝜒𝑟𝑒𝑑

2 <

1 implies overfitting of the data.  Therefore, the closer 𝜒𝑟𝑒𝑑
2  is to unity (without being less than 

unity), the better the fit.  The minimization program is run over the parameters to minimize 𝜒𝑟𝑒𝑑
2 . 

Binomial distribution  

In a time-correlated, single-photon counting experiment, the random events are 

independent of each other; and each pulse, by experimental design, can only give one photon in 

any of the 1024 bins.  The next photon is detected in a completely different cycle that depends on 

an identical but different pulse.  It can, therefore, be concluded that the successive detection of a 

photon in any particular bin is independent of the detection of any other photon.   

The probability distribution of discrete events, such as occurring in the TCSPC experiment, 

can be described by several well-known probability distributions.  The binomial probability 

distribution is one example where the probability distribution of the number of successes is 

described for a series of independent experiments.  In each experiment, the probability of success 

or failure is identical.37  (This is also known as a Bernoulli trial). 

Let the probability that a photon is detected (success) in the jth bin be pj.  Depending on 

whether the fluorescence decay is described by two or one decaying exponentials, the expression 

for pj is given by either equation (4.4) or equation (4.6).  The probability that the photon is not 

detected (failure) in the jth bin is given by 𝑞𝑗 = 1 − 𝑝𝑗.  Let 𝑐𝑗 be the number of photons that is 

accumulated in jth bin in an experiment, where the total number of counts is 𝐶𝑇.  The binomial 

probability function is thus given by:  
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where the factor on the right in the curved bracket is the binomial coefficient.  It is important to 

note that the binomial probability is independent of all indices except j and that, therefore, the 

distribution of the number of photons over all the other channels, (𝐶𝑇 − 𝑐𝑗 ), which do not 

accumulate in the jth bin, does not affect the binomial probability.  This independent but identical 

binomial probability can be maximized with respect to the parameters (𝜏1, b or 𝜏1, 𝜏2, 𝑎1, b), 

depending on the model used to describe the fluorescence decay.  This procedure thus generates a 

lifetime value for every channel for one fluorescence decay experiment, from which a histogram 

of lifetime values can be obtained.  From this histogram, the mean and standard deviation of the 

lifetime parameters can be extracted.  Furthermore, we can construct a joint probability distribution 

to obtain a best possible value of the lifetime corresponding to a single decay curve.  The joint 

probability is given by:  
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Maximization of the probability 𝑃𝑏𝑖𝑛𝑜𝑚 can be performed over the parameters used to describe the 

fluorescence decay function. 

Poisson distribution  

Another well-known probability distribution that describes the occurrence of discrete 

events is the Poisson distribution.37  The Poisson distribution gives the probability of the 

occurrence of a certain number of events for a given average number of events in that time interval.  

The Poisson distribution can be applied if the successive occurrences of the events are independent 

of each other and the numbers of occurrences are integers.  (For our case, we are not interested in 

the number of events that do not occur).  Since successive photon counts are independent and since 

a photon count in a bin is an integer, the time-correlated, single-photon counting experiment 
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conforms to the criteria necessary for its being able to be described by a Poisson distribution.  

Whereas the binomial distribution incorporates the probability that a photon is accumulated 

(success) or not accumulated (failure) in a given bin directly, the Poisson distribution requires the 

average number of photons that accumulates is a certain bin in order to estimate the probability of 

having a certain number of photons in a given bin in the same time interval.  The Poisson 

distribution is an approximation of the binomial distribution in the limit where the number of trials 

is relatively large and (or) the probability of success of each trial is very small (which is the case 

in all of our experiments).37 

In order for the Poisson distribution to be applied, one must know beforehand that the 

fluorescence decay is indeed an exponential (or sum of exponentials) because the Poisson 

distribution employs the mean or the average number of counts in a bin.   For example, consider a 

given decay, where we have a number, 𝐶𝑇 , of photons collected over a time window, T.  Now, to 

estimate the average number of photons in a bin within that time window, T, we can simply use 

the multiexponential function, even though the true nature of the probability distribution of the 

emission may not be known owing to collection of only a small number of photons, because we 

require only the average number of predicted counts.  

Let us assume that we continue collecting the fluorescence decay until it becomes smooth 

enough to be fit with the usual residual minimization methods.  A full decay will have 65535 

photons in the peak channel (a 16-bit memory sets the limit of the number of counts to 216-1 in a 

channel).  If this process takes a time period of 𝑇𝑚 = 𝑚𝑇, then the total number of photons is 𝐶𝑇𝑚 .  

If the rate of the data acquisition remains constant within the time period, then we have 𝐶𝑇𝑚 =

𝑚𝐶𝑇 .  Now we can apply the multiexponential model to estimate the average number of predicated 

counts in a bin:  
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The average number of counts in the time period T is given by:  
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Now, the Poisson distribution is given by: 
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where 𝜆𝑗  is the average number of success at jth bin in the same time interval and is given by 𝜆𝑗 =

�̂�𝑗.  The important point here is that given the above, we can conclude that each bin follows an 

identical and independent Poisson distribution and that we can maximize the probability of having 

a number, cj, of “successes” to obtain the estimated lifetime of the sample at the corresponding 

time bin.  We can define the joint probability distribution of a sequence of counts in a single decay 

in the same manner as we defined it in the case of the binomial distribution. 
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Maximization of the probability P can be performed over the parameters, 𝜏1, 𝜏2, 𝑎1, and b. 

Maximum likelihood method (ML) 

Another approach to describe the joint probability distribution is to express it in terms of a 

multinomial form and to apply the maximum likelihood technique on the resulting distribution 

function. The total probability of having a sequence {𝑐1, 𝑐2, … , 𝑐1024} subject to the condition, 

𝐶𝑇 = ∑ 𝑐𝑗𝑗  , follows the multinomial distribution: 
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We can define a likelihood function as the joint probability density function above:  𝐿( �̂�, 𝑐)  =

𝑃𝑟(𝑐1, 𝑐2, ⋯ , 𝑐1024).  We substitute the expression for the probability as 𝑝𝑗 = �̂�𝑗/𝐶𝑇 to obtain: 
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Following the treatment of Baker and Cousins,9 we let {𝑐′} represent the true value of {𝑐} given by 

the model.  A likelihood ratio, λ, can be defined as:  

 ˆ( , ) / ( , )L c c L c c =  (4.19) 

According to the likelihood ratio test theorem, the “likelihood χ2” is defined by 

 
2 2ln = −  (4.20) 

which obeys a chi-squared distribution as the sample size (or number of total counts) increases.   
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For the multinomial distribution, we may replace the unknown {c'} by the experimentally 

observed {𝑐}.   This gives: 
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and the “likelihood χ2” becomes:  
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The minimization of the “likelihood χ2,” is done by varying the parameters 𝜏1, 𝜏2, 𝑎1 and b. 

It is important to recognize that the multinomial form given in equation (4.17) and the 

“likelihood χ2” form given in equation (4.22), popularized by Baker and Cousins9 and used by 

several others20,21,23,27, are formally identical to each other.  Maximization of the probability in 

equation (4.17) is equivalent to minimization of 𝜒𝜆
2 in equation (4.22).  

Furthermore, we note that all the probability-based methods are equivalent under certain 

assumptions.  It has already been pointed out in the previous section that the Poisson distribution 

is related to the binomial distribution in the limit where the number of trials is relatively large and 

(or) the probability of success of each trial is very small.  The joint Poisson probability distribution 

given in equation (4.16) can be written as:  
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since 𝜆𝑗 = �̂�𝑗. This equation can be transformed to: 
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Under the assumption that the total number of predicted counts is equal to the total number of 

observed photon counts ( ∑ �̂�𝑗𝑗 = ∑ 𝑐𝑗 = 𝐶𝑇𝑗 ), we have: 
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Now, because �̂�𝑗 = 𝐶𝑇𝑝𝑗, equation (4.25) can be written as: 
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where 𝛽1 is independent of the parameters 𝜏1 , 𝜏2 , 𝑎1  and 𝑏, and thus remains constant during 

optimization.  Furthermore, from equation (4.17), it can also be shown that 
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 (4.27) 

where 𝛽2  is another constant independent of the parameters 𝜏1 , 𝜏2 , 𝑎1  and 𝑏 . Therefore, the 

maximization of the probability given in equation (4.26) and (4.27) will be at the same point in the 

parameter space.  In the ensuing discussion, for simplicity and economy, we shall, however, 

primarily discuss ML as representative of the probability-based methods unless otherwise noted.  

Computational methods 

The RM, ML, binomial, and Poisson analyses described above are performed using codes 

written in MATLAB that were run on a machine equipped with a quad-core Intel® CoreTM i7 
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processor and 16 Gigabytes of memory.  We employ the GlobalSearch toolbox, which uses the 

“fmincon” solver to minimize the objective function in the respective cases.  In each calculation, 

a global minimum was found.  In the case of a single-component system, we have two parameters, 

𝜏1 and 𝑏.  For a two-component system, there are four parameters:  𝜏1, 𝜏2, 𝑎1, and b.  With our in-

house routines, we experimented with different initial values in the following ranges for 𝜏1, 𝜏2, 𝑎1, 

and b :  0.01-1.5 ns, 1.5-3.5 ns, 0.0-1.0, and -0.1 to 0.1 ns, respectively.  Within the specified 

ranges, we always retrieved the same fit results through the third decimal place.  Since the binomial 

and the Poisson distributions can be defined for individual channels in a single fluorescence data 

trace by equations (4.11) and (4.15), we have estimated the parameters for given traces for each 

individual channel and subsequently constructed histograms of the parameter values to obtain 

statistics for those values.  For purposes of illustration, we have arbitrarily chosen three individual 

florescence decays from total-count data sets for a 50:50 mixture for 200, 6000, and 20000 total 

counts.  (Experiments for all the mixtures for all the total counts numbers were performed, and a 

large selection of the results are presented in the supporting information).  Finally, for comparison, 

the data were also analyzed with the proprietary SPCImage software v. 4.9.7 (SPCI), provided by 

Becker & Hickl GmbH. 

 

4.4  Results and Discussion 

4.4.1  Complete fluorescence decay analyses  

 Each of the fluorescence decays was analyzed by the RM-Pearson (equation 4.8), RM-

Neyman (equation 4.9 ), ML (equation 4.22), binomial (equation 4.12), and the Poisson (equation 

4.16) methods. For purposes of comparison, the commercial software (SPCI) was also used.  

Figure 4.2 presents the sample decay traces for Rb:RhB 50:50 along with the fit obtained with the 
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ML method.   Histograms of the lifetime parameters (𝜏1, 𝜏2 and 𝑎1) for the 50:50 mixture obtained 

using all the methods are given in Figure 4.3a-c.    The vertical dotted dark gray line in each panel 

represents the target value for the parameter.  The results of the mean and the standard deviation 

for 𝜏1, 𝜏2, and 𝑎1 computed from the different methods are summarized in Tables 4.1, 4.2, and 

4.3, respectively for the 50:50 mixture.  Tables 4.4, 4.5, and 4.6 present a concise summary of the 

results for all of the mixtures for all of the techniques employed at which a minimum number of 

total counts provided mean values within ~ 10% of the target values with standard deviations of ~ 

20% of the target value.   

 These results indicate that the probability-based methods (ML, Poisson and binomial) are 

very effective in recovering the target fluorescence decay parameters.  These three methods yield 

very similar results (indeed, identical through the second or third decimal place), as might be 

expected, given their similarity.  A few salient points can be noted.  When data for the mixtures 

are analyzed using the probability-based methods, the lower limit of the number of total counts 

where one retrieves the target mean with ~ 20% standard deviation is higher than that of pure 

compound (for which the total number of counts is about 20) in general.  For the lifetime of rose 

bengal (𝜏1), the mean target lifetime can be retrieved to less than 20 % of standard deviation with 

a total number of counts as low as 6000 in the case of the 50:50 mixture.  For the lifetime of 

rhodamine B (𝜏2), the mean target lifetime can be retrieved to about 20% of the standard deviation 

with only 100 total counts for the same mixture.  The amplitude of the rose bengal lifetime (𝑎1) 

can be obtained with the same degree of precision with only 1000 total counts for the same mixture.    

The minimum number of total counts required to estimate the lifetime of rose bengal 

increases as the fraction of rhodamine B increases.  For example, in order to retrieve the target 

lifetime of rose bengal (𝜏1) with a standard deviation of ~ 20% or less, 20, 1000, 6000, and 10000 
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total counts are required for the mixtures Rb:RhB 100:0, Rb:RhB 75:25, Rb:RhB 50:50, and 

Rb:RhB 25:75  respectively.  The same trend is also reflected for the amplitude of the rose bengal 

lifetime, 𝑎1.  A minimum of 200, 1000, and 10000 total counts are required for the mixtures 

Rb:RhB 75:25, Rb:RhB 50:50, and Rb:RhB 25:75, respectively, to retrieve the correct result with 

a standard deviation of  ~20% or less.   Finally, for the lifetime of rhodamine B (𝜏2), the minimum 

number of total counts required are 100, 100, 100, and 20 for the mixtures Rb:RhB 75:25, Rb:RhB 

50:50, Rb:RhB 25:75, and Rb:RhB 0:100, respectively, to obtain the target lifetime with a standard 

deviation of ~20% or less.   

We note that the lifetime of rose bengal becomes 10-20 ps (2-4%) shorter on average while 

the mean lifetime of rhodamine B becomes 70-110 ps (3-5%) shorter in the limit of 20000 total 

counts in the case of mixtures. The extent to which this shortening occurs depends roughly on the 

concentration of the other component. This observation has been confirmed from an independent 

experiment where the decay traces are collected to the highest quality supported by the memory.  

 With regard to the relative merits of the techniques, the residual minimization methods 

(RM-Pearson and RM-Neyman) proved to be markedly inferior to the ML and probability-based 

methods in retrieving the fluorescence lifetime parameters (Figures 4.3 and Tables 4.1-4.3).  In 

this context, we also note that the commercial software (SPCI), which is also based on a residual 

minimization method, has its own peculiarities.   Some of these are summarized here.   Except for 

the pure rose bengal data sets, one needs at least 500 total counts in order for the software even to 

initiate the analysis.  In the case of pure rose bengal, one needs at least 200 total counts.  In almost 

all cases, SPCI retrieves significantly different target values with larger standard deviations 

compared to all of the other methods, especially for mixtures where the total number of counts is 

less than 20000 (Tables 4.1-4.3).  And even with 20000 total counts for the 50:50 mixture, SPCI 
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grossly overestimates the lifetime of rose bengal as 0.9 ns.  Because SPCI is propriety, we are 

unable to obtain the source code to discern the origins of this behavior.   

4.4.2  A bin-by-bin analyses of a single fluorescence decay trace to yield statistics  

As noted above, the probability distribution for the number of photon counts in each 

individual bin can be obtained using the binomial (equation 4.11) and the Poisson (equation 4.15)  

probability distributions. This property permits the analysis of a single florescence decay trace, 

bin-by-bin, and of constructing frequency histograms of the various fluorescence decay 

parameters.  From the histograms, the mean, median, and standard deviations of the parameters 

can be obtained.  To demonstrate this, we have arbitrarily chosen three individual fluorescence 

decay traces from the sets of experiments with total counts 200, 6000, and 20000, respectively.  

Each trace has been analyzed by using the Poisson and the binomial methods, which have been 

applied to all five Rb:RhB mixtures examined (see supporting information).  For purposes of 

illustration, the histograms obtained using the Poisson distribution method are presented in Figure 

4.4 for the Rb:RhB 50:50 mixture.  A normalized Gaussian line (red) has been overlaid in each 

histogram using the calculated mean and standard derivation of (𝜏1, 𝜏2, or 𝑎1).  As one might 

expect, the distribution becomes narrower and more well-defined as we progress from 200 to 

20000 total counts.  

4.5  Conclusions  

We have presented a detailed comparison of probability-based methods (ML, binomial and 

the Poisson) with residual minimization-based methods (RM-Pearson, RM-Neyman, and SPCI) to 

retrieve the fluorescence decay parameters for various two-component mixtures in time-correlated, 

single-photon counting experiments.  The maximum likelihood (ML) proved to be the most robust 

way to retrieve the target parameters.  All the probability-based methods, however, have performed 
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equivalently to 2-3 significant figures.  This is to be expected, as the three methods are all 

fundamentally related.  ML consistently outperforms the RM methods.  In some cases, RM-based 

methods did not converge to the expected values for a given number of total counts.  RM-Pearson 

tends to overestimate parameters while RM-Neyman tends to underestimate them, both giving 

larger standard deviations than ML.  We have discussed a bin-by-bin analysis of a single 

fluorescence decay trace and have shown that it is possible to retrieve not only their mean and 

median values but also the associated standard deviations by constructing frequency histograms 

from the analysis of the fluorescence decay at each bin.  In conclusion, the ML technique or a bin-

by-bin analysis provide robust methods (insensitive to initial conditions) of analyzing time-

correlated, single-photon counting data for sparse data sets, and, in the case of bin-by-bin analysis, 

providing statistics from one fluorescence decay.  These methods lend themselves well to the 

sparse data sets that can be encountered in subdiffraction-limited microscopies, such as STED.  

4.6  Acknowledgments 

The work performed by K. Santra, E. A. Smith, and J. W. Petrich was supported by the 

U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, 

Geosciences, and Biosciences through the Ames Laboratory.  The Ames Laboratory is operated 

for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-

07CH11358.  X. Song was supported by The Division of Material Sciences and Engineering, 

Office of Basic Energy Sciences, U.S. Department of Energy, under Contact No. W-7405-430 

ENG-82 with Iowa State University.  We acknowledge the assistance of Mr. Zhitao Zhao, a visiting 

undergraduate student from Beijing Normal University, Beijing. 

  



www.manaraa.com

113 

 

4.7  References   

1.  Fleming, G. R. Chemical Application of Ultrafast Spectroscopy Oxford University Press: New 

York, 1986. 

2.  O'Connor, D. V.; Phillips, D. Time Correlated Single Photon Counting Academic Press Inc.: 

London, 1984. 

3.  Santra, K.; Zhan, J.; Song, X.; Smith, E. A.; Vaswani, N.; Petrich, J. W. What Is the Best 

Method to Fit Time-Resolved Data? A Comparison of the Residual Minimization and the 

Maximum Likelihood Techniques as Applied to Experimental Time-Correlated, Single-Photon 

Counting Data. J. Phys. Chem. B. 2016, 120 (9), 2484-2490. 

4.  Syed, A.; Lesoine, M. D.; Bhattacharjee, U.; Petrich, J. W.; Smith, E. A. The Number of 

Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images. 

Photochem. Photobiol. 2014, 90 (4), 767-772. 

5.  Lesoine, M. D.; Bhattacharjee, U.; Guo, Y.; Vela, J.; Petrich, J. W.; Smith, E. A. Subdiffraction, 

Luminescence-Depletion Imaging of Isolated, Giant, CdSe/CdS Nanocrystal Quantum Dots. J. 

Phys. Chem. C. 2013, 117 (7), 3662-3667. 

6.  Lesoine, M. D.; Bose, S.; Petrich, J. W.; Smith, E. A. Supercontinuum Stimulated Emission 

Depletion Fluorescence Lifetime Imaging. J. Phys. Chem. B. 2012, 116 (27), 7821-7826. 

7.  Ankjærgaard, C.; Jain, M.; Hansen, P. C.; Nielsen, H. B. Towards Multi-Exponential Analysis 

in Optically Stimulated Luminescence. J. Phys. D: Appl. Phys. 2010, 43 (19), 195501. 

8.  Bajzer, Ž.; Therneau, T. M.; Sharp, J. C.; Prendergast, F. G. Maximum Likelihood Method for 

the Analysis of Time-Resolved Fluorescence Decay Curves. Eur. Biophys. J. 1991, 20 (5), 247-

262. 

9.  Baker, S.; Cousins, R. D. Clarification of the Use of Chi-Square and Likelihood Functions in 

Fits to Histograms. Nucl. Instr. Meth. Phys. Res. 1984, 221 (2), 437-442. 

10.  Bevington, P.; Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences, 

3rd ed.; McGraw-Hill: New York, 2002. 

11.  Bialkowski, S. E. Data Analysis in the Shot Noise Limit. 1. Single Parameter Estimation with 

Poisson and Normal Probability Density Functions. Anal. Chem. 1989, 61 (22), 2479-2483. 



www.manaraa.com

114 

 

12.  Bialkowski, S. E. Data Analysis in the Shot Noise Limit. 2. Methods for Data Regression. 

Anal. Chem. 1989, 61 (22), 2483-2489. 

13.  Enderlein, J.; Köllner, M. Comparison between Time‐Correlated Single Photon Counting and 

Fluorescence Correlation Spectroscopy in Single Molecule Identification. Bioimaging. 1998, 6 (1), 

3-13. 

14.  Grinvald, A.; Steinberg, I. Z. On the Analysis of Fluorescence Decay Kinetics by the Method 

of Least-Squares. Anal. Biochem. 1974, 59 (2), 583-598. 

15.  Hall, P.; Selinger, B. Better Estimates of Exponential Decay Parameters. J. Phys. Chem. 1981, 

85 (20), 2941-2946. 

16.  Hauschild, T.; Jentschel, M. Comparison of Maximum Likelihood Estimation and Chi-Square 

Statistics Applied to Counting Experiments. Nucl. Instr. Meth. Phys. Res. A. 2001, 457 (1), 384-

401. 

17.  Hinde, A. L.; Selinger, B.; Nott, P. On the Reliability of Fluorescence Decay Data. Aust. J. 

Chem. 1977, 30 (11), 2383-2394. 

18.  Kim, G.-H.; Legresley, S. E.; Snyder, N.; Aubry, P. D.; Antonik, M. Single-Molecule Analysis 

and Lifetime Estimates of Heterogeneous Low-Count-Rate Time-Correlated Fluorescence Data. 

Appl. Spectrosc. 2011, 65 (9), 981-990. 

19.  Köllner, M.; Wolfrum, J. How Many Photons Are Necessary for Fluorescence-Lifetime 

Measurements? Chem. Phys. Lett. 1992, 200 (1), 199-204. 

20.  Laurence, T. A.; Chromy, B. A. Efficient Maximum Likelihood Estimator Fitting of 

Histograms. Nat. Methods. 2010, 7 (5), 338-339. 

21.  Maus, M.; Cotlet, M.; Hofkens, J.; Gensch, T.; De Schryver, F. C.; Schaffer, J.; Seidel, C. An 

Experimental Comparison of the Maximum Likelihood Estimation and Nonlinear Least-Squares 

Fluorescence Lifetime Analysis of Single Molecules. Anal. Chem. 2001, 73 (9), 2078-2086. 

22.  Moore, C.; Chan, S. P.; Demas, J.; DeGraff, B. Comparison of Methods for Rapid Evaluation 

of Lifetimes of Exponential Decays. Appl. Spectrosc. 2004, 58 (5), 603-607. 



www.manaraa.com

115 

 

23.  Nishimura, G.; Tamura, M. Artefacts in the Analysis of Temporal Response Functions 

Measured by Photon Counting. Phys. Med. Biol. 2005, 50 (6), 1327. 

24.  Periasamy, N. Analysis of Fluorescence Decay by the Nonlinear Least Squares Method. 

Biophys. J. 1988, 54 (5), 961-967. 

25.  Sharman, K. K.; Periasamy, A.; Ashworth, H.; Demas, J. Error Analysis of the Rapid Lifetime 

Determination Method for Double-Exponential Decays and New Windowing Schemes. Anal. 

Chem. 1999, 71 (5), 947-952. 

26.  Tellinghuisen, J.; Goodwin, P. M.; Ambrose, W. P.; Martin, J. C.; Keller, R. A. Analysis of 

Fluorescence Lifetime Data for Single Rhodamine Molecules in Flowing Sample Streams. Anal. 

Chem. 1994, 66 (1), 64-72. 

27.  Turton, D. A.; Reid, G. D.; Beddard, G. S. Accurate Analysis of Fluorescence Decays from 

Single Molecules in Photon Counting Experiments. Anal. Chem. 2003, 75 (16), 4182-4187. 

28.  Luchowski, R.; Szabelski, M.; Sarkar, P.; Apicella, E.; Midde, K.; Raut, S.; Borejdo, J.; 

Gryczynski, Z.; Gryczynski, I. Fluorescence Instrument Response Standards in Two-Photon Time-

Resolved Spectroscopy. Appl. Spectrosc. 2010, 64 (8), 918-922. 

29.  Kristoffersen, A. S.; Erga, S. R.; Hamre, B.; Frette, Ø. Testing Fluorescence Lifetime 

Standards Using Two-Photon Excitation and Time-Domain Instrumentation: Rhodamine B, 

Coumarin 6 and Lucifer Yellow. J. Fluoresc. 2014, 24 (4), 1015-1024. 

30.  Snare, M. J.; Treloar, F. E.; Ghiggino, K. P.; Thistlethwaite, P. J. The Photophysics of 

Rhodamine B. J. Photochem. 1982, 18 (4), 335-346. 

31.  Beaumont, P. C.; Johnson, D. G.; Parsons, B. J. Photophysical Properties of Laser Dyes: 

Picosecond Laser Flash Photolysis Studies of Rhodamine 6G, Rhodamine B and Rhodamine 101. 

J. Chem. Soc., Faraday Trans. 1993, 89 (23), 4185-4191. 

32.  Calligaris, F.; Ciuti, P.; Gabrielli, I.; Giamcomich, R.; Mosetti, R. Wavelength Dependence 

of Timing Properties of the Xp 2020 Photomultiplier. Nucl. Instr. Meth. 1978, 157 (3), 611-613. 

33.  Sipp, B.; Miehe, J.; Lopez-Delgado, R. Wavelength Dependence of the Time Resolution of 

High-Speed Photomultipliers Used in Single-Photon Timing Experiments. Opt. Commun. 1976, 

16 (1), 202-204. 



www.manaraa.com

116 

 

34.  Jading, Y.; Riisager, K. Systematic Errors in 2-Fitting of Poisson Distributions. Nucl. Instr. 

Meth. Phys. Res. A. 1996, 372 (1), 289-292. 

35.  Neyman, J.; Pearson, E. S. On the Use and Interpretation of Certain Test Criteria for Purposes 

of Statistical Inference: Part I. Biometrika. 1928, 20A (1/2), 175-240. 

36.  Neyman, J.; Pearson, E. S. On the Use and Interpretation of Certain Test Criteria for Purposes 

of Statistical Inference: Part II. Biometrika. 1928, 20A (3/4), 263-294. 

37.  Feller, W. An Introduction to Probability Theory and Its Applications: Volume I, 3rd ed.; John 

Wiley & Sons, Inc. London-New York-Sydney-Toronto: 1968. 

 

 

  



www.manaraa.com

117 

 

4.8  Tables and Figures 

Table 4.1 

Rose bengal (𝜏1):  mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 50:50 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 0.5 ± 0.5 0.5 ± 0.5 0.5 ± 0.5 0.3 ± 0.4 0.4 ± 0.3 0 ± 0 

100 0.6 ± 0.5 0.6 ± 0.5 0.6 ± 0.5 0.2 ± 0.2 1.1 ± 0.6 0 ± 0 

200 0.6 ± 0.5 0.7 ± 0.5 0.7 ± 0.5 0.3 ± 0.2 0.2 ± 0.3 0 ± 0 

500 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.2 0.3 ± 0.1 1.4 ± 1.0 

1000 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.7 ± 0.2 0.43 ± 0.08 1.3 ± 0.5 

3000 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.9 ± 0.2 0.87 ± 0.08 1.5 ± 0.4 

6000 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.9 ± 0.2 1.1 ± 0.1 1.2 ± 0.2 

10000 0.48 ± 0.06 0.48 ± 0.06 0.48 ± 0.06 0.8 ± 0.2 0.8 ± 0.4 1.5 ± 0.3 

20000 0.47 ± 0.04 0.47 ± 0.04 0.47 ± 0.04 0.6 ± 0.1 0.47 ± 0.05 0.9 ± 0.1 
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Table 4.2 

Rhodamine B (𝜏2):  mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 50:50 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 2.7 ± 0.7 2.6 ± 0.8 2.6 ± 0.7 3.1 ± 0.6 2.1 ± 0.6 0 ± 0 

100 2.6 ± 0.5 2.6 ± 0.5 2.6 ± 0.5 3.48 ± 0.08 1.6 ± 0.2 0 ± 0 

200 2.7 ± 0.5 2.7 ± 0.5 2.7 ± 0.5 3.48 ± 0.08 2.3 ± 0.2 0 ± 0 

500 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 3.48 ± 0.07 3.47 ± 0.08 6 ± 7 

1000 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 3.48 ± 0.07 3.5 ± 0 3 ± 2 

3000 2.4 ± 0.1 2.4 ± 0.1 2.4 ± 0.1 3.4 ± 0.1 3.5 ± 0 2.9 ± 0.6 

6000 2.39 ± 0.06 2.39 ± 0.06 2.39 ± 0.06 3.1 ± 0.2 3.5 ± 0.2 3.7 ± 0.6 

10000 2.39 ± 0.04 2.39 ± 0.04 2.39 ± 0.04 2.9 ± 0.2 2.7 ± 0.5 3.8 ± 0.9 

20000 2.38 ± 0.03 2.38 ± 0.03 2.38 ± 0.03 2.61 ± 0.06 2.28 ± 0.04 2.45 ± 0.08 
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Table 4.3 

Rose bengal (𝑎1):  mean value of the amplitude of the component of rose bengal emission ± 

standard deviation for a Rb:RhB 50:50 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 

0.8 ± 0.3 0.8 ± 0.3 0.8 ± 0.3 0.4 ± 0.4 

0.999 ± 

0.009 0 ± 0 

100 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.3 0.6 ± 0.4 0 ± 0 

200 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.4 ± 0.3 0 ± 0 

500 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.2 0.7 ± 0.3 

1000 0.49 ± 0.09 0.49 ± 0.09 0.48 ± 0.09 0.58 ± 0.05 0.64 ± 0.05 0.7 ± 0.1 

3000 0.45 ± 0.06 0.45 ± 0.05 0.45 ± 0.05 0.64 ± 0.04 0.72 ± 0.02 0.7 ± 0.1 

6000 0.44 ± 0.03 0.44 ± 0.03 0.44 ± 0.03 0.61 ± 0.06 0.76 ± 0.05 0.77 ± 0.09 

10000 0.44 ± 0.02 0.44 ± 0.02 0.44 ± 0.02 0.57 ± 0.05 0.6 ± 0.2 0.8 ± 0.2 

20000 0.44 ± 0.02 0.44 ± 0.02 0.44 ± 0.02 0.5 ± 0.02 0.42 ± 0.02 0.42 ± 0.05 
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Table 4.4 

Rose bengal lifetime (𝜏1):  The total number of counts required for a given method to obtain a 

mean value within ~ 10% of the target value (𝜏1 = 0.49 ns) with a standard deviation of ~ 20% a 

 
ML RM-Pearson RM-Neyman SPCI 

Sets Lifetime 

(ns) 

Min 

Total 

Counts 

Lifetime 

(ns) 

Min 

Total 

Counts 

Lifetime 

(ns) 

Min 

Total 

Counts 

Lifetime 

(ns) 

Min 

Total 

Counts 

Rb:RhB 

100:0 

0.5 ± 0.1 20 0.54 ± 

0.02 

6000 0.53 ± 

0.06 

500 0.48 ± 

0.04 

500 

Rb:RhB 

75:25 

0.5 ± 0.1 1000 0.53 ± 

0.03 

20000 0.49 ± 

0.03 

20000 0.52 ± 

0.06 

20000 

Rb:RhB 

50:50 

0.5 ± 0.1 6000 0.6 ± 0.1 20000 0.47 ± 

0.05 

20000 0.9 ± 0.1 20000 

Rb:RhB 

25:75 

0.5 ± 0.1 10000 1.0 ± 0.3 20000 0.5 ± 0.3 20000 1.9 ± 0.1 20000 

Rb:RhB 

0:100 

  
  

  
  

 

a In those cases where the results are not within ~10% of the mean with ~20% SD even with 20000 

counts, a result is nevertheless still reported. 
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Table 4.5 

Rhodamine B lifetime (𝜏2):  The number of total counts required for a given method to obtain a 

mean value within ~ 10% of the target value (𝜏2 = 2.45 ns) with a standard deviation of ~ 20% 
 

ML RM-Pearson RM-Neyman SPCI 

Sets Lifetime 

(ns) 

Min 

Total 

Counts 

Lifetime 

(ns) 

Min 

Total 

Counts 

Lifetime 

(ns) 

Min 

Total 

Counts 

Lifetime 

(ns) 

Min 

Total 

Counts 

Rb:RhB 

100:0 

  
    

  

Rb:RhB 

75:25 

2.5 ± 0.5 100 2.61 ± 

0.04 

20000 2.4 ± 0.1 10000 2.4 ± 0.2 20000 

Rb:RhB 

50:50 

2.6 ± 0.5 100 2.61 ± 

0.06 

20000 2.7 ± 0.5 10000 2.45 ± 

0.08 

20000 

Rb:RhB 

25:75 

2.7 ± 0.5 100 2.8 ± 0.1 20000 2.36 ± 

0.09 

20000 2.9 ± 0.1 20000 

Rb:RhB 

0:100 

2.4 ± 0.5 20 2.74 ± 

0.03 

6000 2.48 ± 

0.09 

3000 2.4 ± 0.5 1000 
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Table 4.6 

Amplitude of the rose bengal contribution to the fluorescence decay (𝑎1):  The total number of 

counts required for a given method to obtain a mean value within ~ 10% of the target value 

(𝑎1 = 0.68, 0.44 and 0.22 for Rb:RhB 75:25, Rb:RhB 50:50 and Rb:RhB 25:75 respectively) 

with a standard deviation of ~ 20% 
 

ML RM-Pearson RM-Neyman SPCI 

Sets Fraction 

of 𝝉𝟏 

Min 

Total 

Counts 

Fraction 

of 𝝉𝟏 

Min 

Total 

Counts 

Fraction 

of 𝝉𝟏 

Min 

Total 

Counts 

Fraction 

of 𝝉𝟏 

Min 

Total 

Counts 

Rb:RhB 

100:0 

  
    

  

Rb:RhB 

75:25 

0.7 ± 0.1 200 0.75 ± 

0.01 

10000 0.72 ± 

0.03 

10000 0.70 ± 

0.03 

20000 

Rb:RhB 

50:50 

0.49 ± 

0.09 

1000 0.50 ± 

0.02 

20000 0.42 ± 

0.02 

20000 0.42 ± 

0.05 

20000 

Rb:RhB 

25:75 

0.23 ± 

0.04 

10000 0.38 ± 

0.08 

20000 0.23 ± 

0.08 

20000 0.65 ± 

0.07 

20000 

Rb:RhB 

0:100 
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Figure 4.1. (a) Absorption spectra and (b) emission spectra for mixtures of rose bengal (Rb) and 

rhodamine B (RhB) with “composition ratios,” Rb:Rhb of: 100:0; approximately 75:25, 50:50, 

25:75; and 0:100.  The “composition ratio” is the ratio of the optical density of one to the other at 

550 nm, where this ratio is adjusted such that the sums of the individual optical densities are ~0.3, 

as indicated in panel (a).  The exact contribution of the optical density of rose bengal is given by 

the amplitude of its lifetime component, 𝑎1, which is cited in the Tables and Figures. 
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Figure 4.2.  Representative fluorescence decay for a given number of total counts (as indicated in 

each panel) for a 50:50 Rb:RhB mixture.  Experimental data are given by the black traces; the fits, 

by the red curves; and the instrument response functions (IRFs), by the blue traces.  
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Figure 4.3.  Histograms of the (a) lifetime of rose bengal (𝜏1), (b) lifetime of rhodamine B (𝜏2), 
and (c) the amplitude of the lifetime of the short lifetime of rose bengal (𝑎1) estimated by ML 

(red), Poisson (green), binomial (blue), RM-Pearson (magenta), RM-Neyman (orange), and SPCI 

(cyan) methods for the total counts of 200, 6000, and 20000 in the Rb:RhB 50:50 data sets.  The 

bins for all of the histograms are 10 ps wide.  The vertical dark gray dashed lines give the target 

values: 𝜏1 = 0.49 ns;  𝜏2 = 2.45 ns; and 𝑎1 = 0.44 in (a), (b), and (c) respectively. 
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Figure 4.4.  Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters for 𝜏1, 𝜏2, and 𝑎1, are presented in panels (a), (b), and (c), respectively.  The histograms 

are obtained from a bin-by-bin analysis using the Poisson distribution of a representative, single 

fluorescence decay trace from a 50:50 mixture of Rb and RhB with total counts of 200, 6000, and 

20000.  The histograms are fit to Gaussians using the values of the mean and standard deviation 

obtained from them. 
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4.9  Supplementary Information 

4.9.1  Complete fluorescence decay analyses  
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Figure S4.1. Histograms of the lifetime of rose bengal (𝜏1) estimated by ML (red), Poisson 

(green), Binomial (blue), RM-Pearson (magenta), RM-Neyman (orange) and SPCI (cyan) methods 

for the total counts indicated in each panel in the Rb:RhB 100:0 data sets are presented in (a-i)-(a-

iii).  The bins for all of the histograms are 10 ps wide. The vertical dark gray dash lines give target 

values 𝜏1 = 0.49 ns. 
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Figure S4.2. Histograms of the (a-i)-(a-iii) lifetime of rose bengal (𝜏1), (b-i)-(b-iii) lifetime of 

rhodamine B (𝜏2) and (c) the amplitude of the lifetime of the short lifetime of rose bengal (𝑎1) 
estimated by ML (red), Poisson (green), Binomial (blue), RM-Pearson (magenta), RM-Neyman 

(orange) and SPCI (cyan) methods for the total counts indicated in each panel in the Rb:RhB 75:25 

data sets are presented.  The bins for all of the histograms are 10 ps wide. The vertical dark gray 

dash lines give target values 𝜏1 = 0.49  ns, 𝜏2 = 2.45 ns and 𝑎1 = 0.68  in (a), (b) and (c) 

respectively. 
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Figure S4.3. Histograms of the (a-i)-(a-iii) lifetime of rose bengal (𝜏1), (b-i)-(b-iii) lifetime of 

rhodamine B (𝜏2) and (c) the amplitude of the lifetime of the short lifetime of rose bengal (𝑎1) 
estimated by ML (red), Poisson (green), Binomial (blue), RM-Pearson (magenta), RM-Neyman 

(orange) and SPCI (cyan) methods for the total counts indicated in each panel in the Rb:RhB 50:50 

data sets are presented. Note that the 500-10000-count panels in part (b) have different scales for 

the abscissa. The bins for all of the histograms are 10 ps wide. The vertical dark gray dash lines 

give target values 𝜏1 = 0.49 ns, 𝜏2 = 2.45 ns and 𝑎1 = 0.44 in (a), (b) and (c) respectively.  
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Figure S4.4. Histograms of the (a-i)-(a-iii) lifetime of rose bengal (𝜏1), (b-i)-(b-iii) lifetime of 

rhodamine B (𝜏2) and (c) the amplitude of the lifetime of the short lifetime of rose bengal (𝑎1) 
estimated by ML (red), Poisson (green), Binomial (blue), RM-Pearson (magenta), RM-Neyman 

(orange) and SPCI (cyan) methods for the total counts indicated in each panel in the Rb:RhB 25:75 

data sets are presented. Note that the 500-10000-count panels in part (b) have different scales for 

the abscissa. The bins for all of the histograms are 10 ps wide. The vertical dark gray dash lines 

give target values 𝜏1 = 0.49 ns, 𝜏2 = 2.45 ns and 𝑎1 = 0.22 in (a), (b) and (c) respectively. 
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Figure S4.5. Histograms of the lifetime of rhodamine B (𝜏2) estimated by ML (red), Poisson 

(green), Binomial (blue), RM-Pearson (magenta), RM-Neyman (orange) and SPCI (cyan) methods 

for the total counts indicated in each panel in the Rb:RhB 0:100 data sets are presented in (a-i)-(a-

iii).  The bins for all of the histograms are 10 ps wide. The vertical dark gray dash lines give target 

values 𝜏2 = 2.45 ns. 
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Table S4.1 

Rose bengal (𝜏1): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 100:0 mixture  

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.8 ± 0.3 0.2 ± 0.1 0 ± 0 

100 0.5 ± 0.07 0.5 ± 0.07 0.5 ± 0.07 0.8 ± 0.3 0.7 ± 0.1 0 ± 0 

200 0.49 ± 0.03 0.49 ± 0.03 0.49 ± 0.03 0.8 ± 0.3 0.8 ± 0.1 0.7 ± 1 

500 0.49 ± 0.02 0.49 ± 0.02 0.49 ± 0.02 0.8 ± 0.3 0.53 ± 0.06 0.48 ± 0.04 

1000 0.49 ± 0.02 0.49 ± 0.02 0.49 ± 0.02 0.8 ± 0.3 0.47 ± 0.02 0.49 ± 0.04 

3000 0.49 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 0.57 ± 0.04 0.47 ± 0.01 0.49 ± 0.02 

6000 

0.492 ± 

0.008 

0.492 ± 

0.008 

0.492 ± 

0.008 0.54 ± 0.02 

0.476 ± 

0.009 0.49 ± 0.01 

10000 

0.491 ± 

0.005 

0.491 ± 

0.005 

0.491 ± 

0.005 0.52 ± 0.01 

0.48 ± 

0.006 0.48 ± 0.02 

20000 

0.49 ± 

0.004 

0.49 ± 

0.004 

0.49 ± 

0.004 

0.505 ± 

0.006 

0.482 ± 

0.005 0.48 ± 0.02 
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Table S4.2(a) 

Rose bengal (𝜏1): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 75:25 mixture  

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 0.5 ± 0.4 0.4 ± 0.4 0.4 ± 0.4 0.2 ± 0.4 0.4 ± 0.2 0 ± 0 

100 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.3 ± 0.2 0.9 ± 0.6 0 ± 0 

200 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2 0.2 ± 0.4 0 ± 0 

500 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.1 0.3 ± 0.1 0.8 ± 0.5 

1000 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.39 ± 0.05 0.6 ± 0.3 

3000 0.47 ± 0.06 0.47 ± 0.06 0.47 ± 0.06 0.64 ± 0.08 0.62 ± 0.05 0.5 ± 0.2 

6000 0.47 ± 0.04 0.47 ± 0.04 0.47 ± 0.04 0.6 ± 0.1 0.74 ± 0.08 0.5 ± 0.1 

10000 0.47 ± 0.03 0.47 ± 0.03 0.47 ± 0.03 0.57 ± 0.04 0.55 ± 0.06 0.8 ± 0.1 

20000 0.48 ± 0.02 0.48 ± 0.02 0.48 ± 0.02 0.53 ± 0.03 0.49 ± 0.03 0.52 ± 0.06 
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Table S4.2(b) 

Rhodamine B (𝜏2): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 75:25 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 2.5 ± 0.8 2.5 ± 0.8 2.5 ± 0.8 3 ± 0.6 2.2 ± 0.7 0 ± 0 

100 2.5 ± 0.5 2.5 ± 0.5 2.5 ± 0.5 3.4 ± 0.2 1.6 ± 0.3 0 ± 0 

200 2.3 ± 0.4 2.3 ± 0.3 2.3 ± 0.3 3.5 ± 0.1 2 ± 0.3 0 ± 0 

500 2.4 ± 0.3 2.4 ± 0.3 2.4 ± 0.3 3.5 ± 0.1 3.3 ± 0.2 4 ± 8 

1000 2.3 ± 0.2 2.3 ± 0.2 2.3 ± 0.2 3.5 ± 0.1 3.5 ± 0 2.4 ± 0.6 

3000 2.3 ± 0.1 2.3 ± 0.1 2.3 ± 0.1 3.3 ± 0.2 3.5 ± 0 2.2 ± 0.2 

6000 2.33 ± 0.06 2.33 ± 0.06 2.33 ± 0.06 3 ± 0.1 3.3 ± 0.3 2.2 ± 0.2 

10000 2.32 ± 0.06 2.32 ± 0.06 2.32 ± 0.06 2.78 ± 0.09 2.4 ± 0.1 3.1 ± 0.4 

20000 2.34 ± 0.04 2.34 ± 0.04 2.34 ± 0.04 2.61 ± 0.04 2.24 ± 0.05 2.4 ± 0.2 
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Table S4.2(c) 

Rose bengal (𝑎1): mean value of the amplitude of the component of rose bengal emission ± 

standard deviation for a Rb:RhB 75:25 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 

0.8 ± 0.3 0.8 ± 0.3 0.8 ± 0.3 0.5 ± 0.3 

0.999 ± 

0.002 0 ± 0 

100 0.8 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.6 ± 0.2 0.8 ± 0.3 0 ± 0 

200 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.5 ± 0.3 0 ± 0 

500 0.69 ± 0.06 0.69 ± 0.06 0.69 ± 0.06 0.69 ± 0.06 0.7 ± 0.1 0.7 ± 0.2 

1000 0.68 ± 0.05 0.68 ± 0.05 0.68 ± 0.05 0.74 ± 0.03 0.78 ± 0.02 0.7 ± 0.1 

3000 0.69 ± 0.03 0.69 ± 0.03 0.69 ± 0.03 0.78 ± 0.02 0.84 ± 0.01 0.64 ± 0.08 

6000 0.68 ± 0.02 0.68 ± 0.02 0.68 ± 0.02 0.77 ± 0.03 0.84 ± 0.03 0.64 ± 0.06 

10000 0.68 ± 0.02 0.68 ± 0.02 0.68 ± 0.02 0.75 ± 0.01 0.72 ± 0.03 0.79 ± 0.05 

20000 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01 0.73 ± 0.01 0.68 ± 0.01 0.7 ± 0.03 
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Table S4.3(a) 

Rose bengal (𝜏1): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 50:50 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 0.5 ± 0.5 0.5 ± 0.5 0.5 ± 0.5 0.3 ± 0.4 0.4 ± 0.3 0 ± 0 

100 0.6 ± 0.5 0.6 ± 0.5 0.6 ± 0.5 0.2 ± 0.2 1.1 ± 0.6 0 ± 0 

200 0.6 ± 0.5 0.7 ± 0.5 0.7 ± 0.5 0.3 ± 0.2 0.2 ± 0.3 0 ± 0 

500 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.2 0.3 ± 0.1 1.4 ± 1.0 

1000 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.7 ± 0.2 0.43 ± 0.08 1.3 ± 0.5 

3000 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.9 ± 0.2 0.87 ± 0.08 1.5 ± 0.4 

6000 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.9 ± 0.2 1.1 ± 0.1 1.2 ± 0.2 

10000 0.48 ± 0.06 0.48 ± 0.06 0.48 ± 0.06 0.8 ± 0.2 0.8 ± 0.4 1.5 ± 0.3 

20000 0.47 ± 0.04 0.47 ± 0.04 0.47 ± 0.04 0.6 ± 0.1 0.47 ± 0.05 0.9 ± 0.1 
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Table S4.3(b) 

Rhodamine B (𝜏2): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 50:50 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 2.7 ± 0.7 2.6 ± 0.8 2.6 ± 0.7 3.1 ± 0.6 2.1 ± 0.6 0 ± 0 

100 2.6 ± 0.5 2.6 ± 0.5 2.6 ± 0.5 3.48 ± 0.08 1.6 ± 0.2 0 ± 0 

200 2.7 ± 0.5 2.7 ± 0.5 2.7 ± 0.5 3.48 ± 0.08 2.3 ± 0.2 0 ± 0 

500 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 3.48 ± 0.07 3.47 ± 0.08 6 ± 7 

1000 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 3.48 ± 0.07 3.5 ± 0 3 ± 2 

3000 2.4 ± 0.1 2.4 ± 0.1 2.4 ± 0.1 3.4 ± 0.1 3.5 ± 0 2.9 ± 0.6 

6000 2.39 ± 0.06 2.39 ± 0.06 2.39 ± 0.06 3.1 ± 0.2 3.5 ± 0.2 3.7 ± 0.6 

10000 2.39 ± 0.04 2.39 ± 0.04 2.39 ± 0.04 2.9 ± 0.2 2.7 ± 0.5 3.8 ± 0.9 

20000 2.38 ± 0.03 2.38 ± 0.03 2.38 ± 0.03 2.61 ± 0.06 2.28 ± 0.04 2.45 ± 0.08 

 

  



www.manaraa.com

162 

 

Table S4.3(c) 

Rose bengal (𝑎1): mean value of the amplitude of the component of rose bengal emission ± 

standard deviation for a Rb:RhB 50:50 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 

0.8 ± 0.3 0.8 ± 0.3 0.8 ± 0.3 0.4 ± 0.4 

0.999 ± 

0.009 0 ± 0 

100 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.3 0.6 ± 0.4 0 ± 0 

200 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.4 ± 0.3 0 ± 0 

500 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.2 0.7 ± 0.3 

1000 0.49 ± 0.09 0.49 ± 0.09 0.48 ± 0.09 0.58 ± 0.05 0.64 ± 0.05 0.7 ± 0.1 

3000 0.45 ± 0.06 0.45 ± 0.05 0.45 ± 0.05 0.64 ± 0.04 0.72 ± 0.02 0.7 ± 0.1 

6000 0.44 ± 0.03 0.44 ± 0.03 0.44 ± 0.03 0.61 ± 0.06 0.76 ± 0.05 0.77 ± 0.09 

10000 0.44 ± 0.02 0.44 ± 0.02 0.44 ± 0.02 0.57 ± 0.05 0.6 ± 0.2 0.8 ± 0.2 

20000 0.44 ± 0.02 0.44 ± 0.02 0.44 ± 0.02 0.5 ± 0.02 0.42 ± 0.02 0.42 ± 0.05 
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Table S4.4(a) 

Rose bengal (𝜏1): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 25:75 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 0.5 ± 0.5 0.6 ± 0.5 0.4 ± 0.5 0.2 ± 0.4 0.4 ± 0.3 0 ± 0 

100 0.6 ± 0.6 0.6 ± 0.6 0.6 ± 0.6 0.1 ± 0.2 0.9 ± 0.7 0 ± 0 

200 0.4 ± 0.5 0.4 ± 0.4 0.4 ± 0.4 0.2 ± 0.2 0.2 ± 0.4 0 ± 0 

500 0.6 ± 0.5 0.5 ± 0.5 0.5 ± 0.5 0.5 ± 0.3 0.2 ± 0.2 1.4 ± 0.7 

1000 0.6 ± 0.5 0.6 ± 0.5 0.6 ± 0.5 0.7 ± 0.2 0.4 ± 0.2 2 ± 0.7 

3000 0.6 ± 0.4 0.6 ± 0.4 0.5 ± 0.4 1.2 ± 0.2 1.05 ± 0.07 2 ± 0.5 

6000 0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 1.3 ± 0.2 1.44 ± 0.06 1.7 ± 0.4 

10000 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 1.2 ± 0.3 1.4 ± 0.3 1.9 ± 0.2 

20000 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 1 ± 0.3 0.5 ± 0.3 1.9 ± 0.1 
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Table S4.4(b) 

Rhodamine B (𝜏2): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 25:75 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 2.8 ± 0.7 2.8 ± 0.7 2.8 ± 0.6 3.2 ± 0.5 2.2 ± 0.8 0 ± 0 

100 2.7 ± 0.5 2.7 ± 0.4 2.7 ± 0.4 3.5 ± 0.1 1.7 ± 0.4 0 ± 0 

200 2.5 ± 0.3 2.5 ± 0.3 2.5 ± 0.2 3.49 ± 0.05 2.6 ± 0.2 0 ± 0 

500 2.5 ± 0.3 2.5 ± 0.3 2.5 ± 0.3 3.49 ± 0.04 3.49 ± 0.04 4 ± 2 

1000 2.6 ± 0.2 2.6 ± 0.2 2.6 ± 0.2 3.48 ± 0.06 3.5 ± 0 4 ± 2 

3000 2.5 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 3.5 ± 0.1 3.5 ± 0 3.2 ± 0.8 

6000 2.46 ± 0.08 2.47 ± 0.08 2.46 ± 0.08 3.3 ± 0.2 3.5 ± 0 4.7 ± 0.7 

10000 2.45 ± 0.04 2.45 ± 0.04 2.45 ± 0.04 3.1 ± 0.2 3.1 ± 0.3 4.3 ± 0.6 

20000 2.45 ± 0.03 2.45 ± 0.03 2.45 ± 0.03 2.8 ± 0.1 2.36 ± 0.09 2.9 ± 0.1 
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Table S4.4(c) 

Rose bengal (𝑎1): mean value of the amplitude of the component of rose bengal emission ± 

standard deviation for a Rb:RhB 25:75 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 0.6 ± 0.4 0.6 ± 0.4 0.6 ± 0.4 0.3 ± 0.3 0.99 ± 0.02 0 ± 0 

100 0.5 ± 0.3 0.5 ± 0.2 0.5 ± 0.3 0.4 ± 0.3 0.4 ± 0.4 0 ± 0 

200 0.5 ± 0.2 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.3 ± 0.3 0 ± 0 

500 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.5 ± 0.2 0.4 ± 0.3 0.7 ± 0.2 

1000 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.45 ± 0.09 0.5 ± 0.1 0.7 ± 0.3 

3000 0.3 ± 0.1 0.28 ± 0.09 0.28 ± 0.08 0.54 ± 0.04 0.63 ± 0.02 0.7 ± 0.2 

6000 0.26 ± 0.06 0.26 ± 0.05 0.26 ± 0.05 0.54 ± 0.08 0.71 ± 0.02 0.84 ± 0.07 

10000 0.23 ± 0.04 0.23 ± 0.05 0.24 ± 0.05 0.5 ± 0.09 0.6 ± 0.1 0.87 ± 0.07 

20000 0.23 ± 0.03 0.23 ± 0.03 0.23 ± 0.03 0.38 ± 0.08 0.23 ± 0.08 0.65 ± 0.07 
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Table S4.5 

Rhodamine B (𝜏2): mean lifetime (ns) ± standard deviation (ns) for a Rb:RhB 0:100 mixture 

Total 

counts 

ML Poisson Binomial RM-

Pearson 

RM-

Neyman 

SPCI 

20 2.4 ± 0.5 2.4 ± 0.5 2.4 ± 0.5 3.3 ± 0.3 1.51 ± 0.03 0 ± 0 

100 2.5 ± 0.2 2.5 ± 0.2 2.5 ± 0.2 3.3 ± 0.4 1.7 ± 0.1 0 ± 0 

200 2.5 ± 0.2 2.5 ± 0.2 2.5 ± 0.2 3.5 ± 0.1 2.7 ± 0.2 0 ± 0 

500 2.5 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 3.4 ± 0.2 3.48 ± 0.07 2 ± 1 

1000 2.46 ± 0.09 2.46 ± 0.09 2.46 ± 0.09 3.3 ± 0.2 3.49 ± 0.03 2.4 ± 0.5 

3000 2.45 ± 0.04 2.45 ± 0.04 2.45 ± 0.04 2.92 ± 0.07 2.48 ± 0.09 2.4 ± 0.1 

6000 2.46 ± 0.03 2.46 ± 0.03 2.46 ± 0.03 2.74 ± 0.03 2.36 ± 0.04 2.4 ± 0.07 

10000 2.46 ± 0.03 2.46 ± 0.03 2.46 ± 0.03 2.66 ± 0.03 2.35 ± 0.04 2.4 ± 0.04 

20000 2.45 ± 0.02 2.45 ± 0.02 2.45 ± 0.02 2.56 ± 0.02 2.37 ± 0.02 2.41 ± 0.03 
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4.9.2  Bin-by-bin analyses of a single fluorescence decay  

Poisson distribution  

  

(a) 

 

Figure S4.6. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameter for 𝜏1 is presented in panels (a).  The histograms are obtained from a bin-by-bin analysis 

using the Poisson distribution of a representative, single fluorescence decay trace from a 100:0 

mixture of Rb and RhB with total counts of 200, 6000, and 20000.  The histograms are fit to 

Gaussians using the values of the mean and standard deviation obtained from them. 
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(a) 

 

  

(b) 

 

  

(c) 

 

Figure S4.7. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters for 𝜏1, 𝜏2, and 𝑎1 are presented in panels (a), (b), and (c), respectively.  The histograms 

are obtained from a bin-by-bin analysis using the Poisson distribution of a representative, single 

fluorescence decay trace from a 75:25 mixture of Rb and RhB with total counts of 200, 6000, and 

20000.  The histograms are fit to Gaussians using the values of the mean and standard deviation 

obtained from them. 
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(a) 

 
  

(b) 

 
  

(c) 

 

Figure S4.8. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters for 𝜏1, 𝜏2, and 𝑎1 are presented in panels (a), (b), and (c), respectively.  The histograms 

are obtained from a bin-by-bin analysis using the Poisson distribution of a representative, single 

fluorescence decay trace from a 50:50 mixture of Rb and RhB with total counts of 200, 6000, and 

20000.  The histograms are fit to Gaussians using the values of the mean and standard deviation 

obtained from them. 
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(a) 

 

  

(b) 

 

  

(c) 

 

Figure S4.9. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters for 𝜏1, 𝜏2, and 𝑎1 are presented in panels (a), (b), and (c), respectively.  The histograms 

are obtained from a bin-by-bin analysis using the Poisson distribution of a representative, single 

fluorescence decay trace from a 25:75 mixture of Rb and RhB with total counts of 200, 6000, and 

20000.  The histograms are fit to Gaussians using the values of the mean and standard deviation 

obtained from them. 
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(a) 

 

Figure S4.10. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters 𝜏2 is presented in panels (a).  The histograms are obtained from a bin-by-bin analysis 

using the Poisson distribution of a representative, single fluorescence decay trace from a 0:100 

mixture of Rb and RhB with total counts of 200, 6000, and 20000.  The histograms are fit to 

Gaussians using the values of the mean and standard deviation obtained from them. 
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Binomial distribution  

 

  

(a) 

 

Figure S4.11. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameter 𝜏1 is presented in panels (a).  The histograms are obtained from a bin-by-bin analysis 

using the binomial distribution of a representative, single fluorescence decay trace from a 100:0 

mixture of Rb and RhB with total counts of 200, 6000, and 20000.  The histograms are fit to 

Gaussians using the values of the mean and standard deviation obtained from them. 
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(a) 

 

  

(b) 

 

  

(c) 

 

Figure S4.12. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters for 𝜏1, 𝜏2, and 𝑎1 are presented in panels (a), (b), and (c), respectively.  The histograms 

are obtained from a bin-by-bin analysis using the binomial distribution of a representative, single 

fluorescence decay trace from a 75:25 mixture of Rb and RhB with total counts of 200, 6000, and 

20000.  The histograms are fit to Gaussians using the values of the mean and standard deviation 

obtained from them. 
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(a) 

 

  

(b) 

 

  

(c) 

 

Figure S4.13. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters for 𝜏1, 𝜏2, and 𝑎1 are presented in panels (a), (b), and (c), respectively.  The histograms 

are obtained from a bin-by-bin analysis using the binomial distribution of a representative, single 

fluorescence decay trace from a 50:50 mixture of Rb and RhB with total counts of 200, 6000, and 

20000.  The histograms are fit to Gaussians using the values of the mean and standard deviation 

obtained from them. 
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(a) 

 

  

(b) 

 

  

(c) 

 

Figure S4.14. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters for 𝜏1, 𝜏2, and 𝑎1 are presented in panels (a), (b), and (c), respectively.  The histograms 

are obtained from a bin-by-bin analysis using the binomial distribution of a representative, single 

fluorescence decay trace from a 25:75 mixture of Rb and RhB with total counts of 200, 6000, and 

20000.  The histograms are fit to Gaussians using the values of the mean and standard deviation 

obtained from them. 
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(a) 

 

Figure S4.15. Histograms of the frequencies of obtaining values of the fluorescence decay 

parameters 𝜏2 is presented in panels (a).  The histograms are obtained from a bin-by-bin analysis 

using the binomial distribution of a representative, single fluorescence decay trace from a 0:100 

mixture of Rb and RhB with total counts of 200, 6000, and 20000.  The histograms are fit to 

Gaussians using the values of the mean and standard deviation obtained from them. 
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CHAPTER 5.  A BAYESIAN APPROACH FOR EXTRACTING FLUORESCENCE 

LIFETIMES FROM SPARSE DATA SETS AND ITS SIGNIFICANCE FOR 

SUBDIFFRACTION-LIMITED IMAGING 

 

The modified content of this chapter to be submitted for publication 

Kalyan Santra 1, Emily A. Smith 1, Xueyu Song 1, and Jacob W. Petrich *,1 

 

5.1  Abstract  

The measurement of fluorescence lifetimes in subdiffraction-limited volumes presents the 

dual challenge of probing a small number of fluorophores and fitting the concomitant sparse data 

set to the appropriate excited-state decay function.  A common method of analysis, such as the   

Maximum Likelihood (ML) technique, assumes a uniform probability distribution of the 

parameters describing the fluorescence decay function.  An improvement is thus suggested by 

implementing a suitable nonuniform distribution, as is provided by a Bayesian framework, where 

the distribution of parameters is obtained from both their prior knowledge and the evidence-based 

likelihood of an event for a given set of parameters.  We have also considered the Dirichlet prior 

distribution, whose great advantage and utility is that its form enables analytical solutions of the 

fitting parameters to be rapidly obtained.  If Gaussian and exponential prior distributions are 
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judiciously chosen, they reproduce the experimental target lifetime to within 20% with as few as 

20 total photon counts for the data set, as does the Dirichlet prior distribution.  But because of the 

analytical solutions afforded by the Dirichlet prior distribution, it is proposed to employ a Dirichlet 

prior to search parameter space rapidly to provide, if necessary, appropriate parameters for 

subsequent employment of a Gaussian or exponential prior distribution.  

 

5.2  Introduction 

Time-correlated, single-photon counting has become an integral part of techniques such as 

fluorescence-lifetime imaging microscopy1-5, Förster resonance-energy transfer6-8, and 

fluorescence-correlation spectroscopy9-11.  The technique records the time difference between the 

arrival times of an excitation pulse and a pulse resulting from a photon detected from fluorescence 

emission.  A histogram of arrival-time differences is accumulated and fit to a model function for 

the fluorescence decay.  The most frequently used fitting method (Residual Minimization, RM) 

minimizes the weighted squares of the residuals of the experimental data and the continuously 

optimized fitting function.  RM requires a histogram of very high quality to extract the mean 

lifetime with high accuracy, and such a histogram is only obtained with a large number of total 

photon counts (~20000 for rose bengal).  In super-resolution microscopies, however, such as 

stimulated-emission depletion microscopy12-14, high spatial resolution is only obtained at the 

expense of the fluorescence signal, as the latter decreases with decreasing detection volume.  

Additional factors such as a low intrinsic fluorescence quantum yield or photodegradation of the 

sample contribute to reducing the magnitude of the total photon counts, thus making it more 

difficult to generate a histogram of high quality.  Unless there is a certain number of total counts, 

RM yields a poor estimate of the mean lifetime.15,16 In these cases15-17, probability-based methods, 
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such as Maximum Likelihood (ML), provide considerable improvement over RM.  One of the 

limitations of ML, however, is that it assumes a uniform probability distribution of the parameters 

describing the fluorescence decay function.  Thus, ML can be further improved by implementing 

a suitable nonuniform distribution.  

Here, we consider photon-counting data analysis using a Bayesian framework, where the 

distribution of parameters is obtained from both their prior knowledge and the evidence-based 

likelihood of an event for a given set of parameters.  If 𝜷 and 𝑬 represent the parameter space and 

the evidence (i.e., experimental observations), respectively, then the posterior distribution of the 

parameters for 𝑬, 𝑃(𝜷|𝑬), is given by the Bayes’ theorem18-20: 

 𝑃(𝜷|𝑬) =
𝑃(𝜷)𝑃(𝑬|𝜷)

𝑃(𝑬)
 

(5.1) 

𝑃(𝑬|𝜷)  is the likelihood of evidence given the set of parameters 𝜷;  and 𝑃(𝜷)  is the prior 

distribution of the parameters, which is obtained from the prior knowledge of the parameters.  As 

the evidence is collected, the prior knowledge can be updated for the prediction of the parameters.   

𝑃(𝑬) is the total likelihood (also known as the marginal likelihood) of the evidence at all possible 

points in the parameter space and acts as a normalization.  

The Bayesian method is employed19,21-34 to estimate parameters where there are insufficient 

evidences.  It has been used in fluorescence-lifetime imaging26,28,33, Förster resonance-energy 

transfer26, and fluorescence-correlation spectroscopy31,32 experiments.  The choices, however, of 

the parameters to which priors are assigned and the functional form of the priors themselves varied 

widely.  In some cases, an exponential prior has been assigned to “the relaxation time of the 

photon-generating emission process” based on the argument that it has the maximum entropy 

within the allowed parameter range33.  In other cases, a uniform prior was assigned for the fraction 

of mean lifetime components; but this defeats the point of implementing the Bayesian approach 
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because it becomes reduced to the ML method26.  Thus, one of the major challenges in 

implementing a Bayesian analysis of photon-counting data is determining the choice of the prior 

distribution and updating it as more evidence is successively acquired.  In this work, we compare 

Gaussian and exponential prior distributions, where the lifetime parameter is directly incorporated 

in the posterior that is to be optimized, as well as Dirichlet prior distribution, where the lifetime 

parameter is indirectly calculated using the estimated probability of the bins.  For the Gaussian 

and exponential prior, two analysis schemes were employed.  In one, an identical prior was used 

for every data trace collected for a fixed number of counts.  In the other, the prior is calculated and 

updated using the statistics of the results obtained from a data trace having a similar number of 

counts.  As the latter method is preferable, the discussion of the former is given in the SI. 

These prior distributions and the utility of the Bayesian approach were tested by analyzing 

photon-counting data obtained from the very well-characterized fluorophore, rose bengal.  Rose 

bengal in methanol has an excited-state lifetime of 0.49 ± 0.01 ns at room temperature.16  Three 

sets of data were collected, each consisting of 50 individual traces, with a total number of counts 

of approximately 20, 200, and 20000, respectively.   In all the analyses, we incorporated the real 

instrument response function (IRF), a very narrow ~20-ps time channel (to avoid the limitations 

incurred from binning time channels16), and a shift parameter.  

5.3  Materials and Methods 

Rose bengal (Sigma-Aldrich, St. Louis) was purified by thin-layer chromatography.16  550 

nm was the excitation wavelength.  Time-resolved data were collected using a home-made 

instrument.16 The full-width at half-maximum of the instrument function was typically ~120 ps.  

The data were collected in 1024 channels (bins), providing a time resolution of 19.51 ps/channel 

and a full-scale time window of 19.98 ns.  Three different data sets consisting of 50 fluorescence 
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decay traces were collected with a total number of counts of approximately 20, 200, and 20000, 

respectively. 

The signal from the excited state of the fluorophore is represented by a single-exponential 

decay. Let 𝑪 = (𝑐1, 𝑐2, … , 𝑐𝐾) be the counts obtained in the 𝐾 (1024) bins represented by the time 

axis, 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝐾), where the center of the jth bin is given by 𝑡𝑗 and the corresponding counts 

are given by 𝑐𝑗 .   In a discretized data collection system, as in time-correlated, single-photon 

counting, the probability that a photon is detected in the jth bin, 𝑝𝑗, is proportional to the discrete 

convolution of the IRF and the model for the fluorescence decay function.  
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where, 𝑏 is a parameter that assumes continuous values, 𝑗0 is an integer and the relation between 

them is given by b = j0ϵ + ζ, where ζ lies between 0 and ϵ, the time width of the bin. b describes 

the linear shift between the instrument response function and the fluorescence decay.16  If �̂�  =

(�̂�1, �̂�2, … , �̂�K) represents the predicted counts from the convoluted exponential model, then the 

number of predicted counts in the jth bin,  �̂�𝑗 , is given by: 
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 (5.3) 

where 𝐶𝑇 = ∑ 𝑐𝑗𝑗 , the total number of counts.   

5.3.1  The likelihood of the collected data and the Bayesian formulation  

The likelihood of observing a sequence of counts (𝑐1, 𝑐2, … , 𝑐𝐾) with probability 

(𝑝1, 𝑝2, … , 𝑝𝐾) for a given set of parameters (𝜏, 𝑏) and subject to the condition, 𝐶𝑇 = ∑ 𝑐𝑗𝑗 , is 

given by the multinomial form15-17:  
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Using equation (5.5.3) and the probability, 𝑝𝑗 = �̂�𝑗/𝐶𝑇 , we obtain: 
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Note that both the probability of a photon being detected in the jth channel, 𝑝𝑗, and the predicted 

counts, �̂�𝑗 , in that channel are functions of the parameters 𝜏 and 𝑏. The experimental data, the 

“evidence” of photon counting events for a given parameter space 𝜷 ≡ (𝜏, 𝑏), are the observed 

counts.  Therefore, we have 𝑬 ≡ 𝑪 = (𝑐1, 𝑐2, … , 𝑐𝐾); and equation (5.4.17) can be rewritten as: 
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Gaussian and exponential prior distributions 

The critical part of the Bayesian analysis is identifying and selecting a suitable prior 

distribution for the parameters.  Since our analysis includes two independent parameters, 𝜏 and 𝑏, 

the prior distribution is: 

 ( ) ( ) ( )P P P b= . (5.7) 

We have shown that the estimated mean lifetime of a fluorophore approximately follows a normal 

distribution.15,16  This conclusion is also obtained from the central limit theorem35,36, which states 

that with a sufficiently large number of samples or of observations the distribution will converge 

to a normal distribution.  Therefore, a Gaussian function with a pre-selected mean and variance is 

arguably a good choice for a prior distribution:  
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The “hyperparameters” (i.e., the parameters determining the distribution of the parameter 𝜏)  𝜇0 

and 𝜎0 are the mean and the standard deviation of the prior distribution for 𝜏.  We also have tested 

the exponential prior distribution for the mean lifetime with known hyperparameter, 𝜆0:  

 0

0( )P e
   −

= , (5.9) 

where 〈𝜏〉 = 1/𝜆0 is the mean of the prior distribution.  For the shift parameters, 𝑏, since we limit 

ourselves to a small range, -0.1 to 0.1 ns, it is convenient to assume that their distribution is 

uniform. Therefore, we take 𝑃(𝑏) = 1/(𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛), which is a constant and does not affect the 

overall prior distribution, 𝑃(𝜷).  From equation (5.5.1), we write:  
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The marginal likelihood, 𝑃(𝑬), is given its name from the process of “marginalization,” which is 

an integration over all the parameters23:  
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Since 𝑃(𝑏) is a constant, it can be eliminated from equation (5.5.11).  Substituting 𝑃(𝜏) from 

equation (5.5.8) and the expression for 𝑃(𝑬|𝜷)  from equation (5.5.6), the logarithm of the 

posterior for the Gaussian prior distribution can be written as: 
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where all the terms that are independent of the parameters 𝜏 and 𝑏 are condensed into the constant 

𝛾1 .  Similarly, if we choose the exponential prior distribution for the mean lifetime given in 

equation (5.5.9), we have:  

 2 0
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ˆln ( ) ln| j
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j

j

P c c  
=

= +−  E , (5.13) 

where 𝛾2 is another constant, independent of the parameters 𝜏 and 𝑏.  Maximization, therefore, of 

the logarithm of the posterior probability distribution in equation (5.5.12) and (5.5.13) provides 

the optimum values of the parameters.  

Dirichlet prior distribution 

Since the joint probability distribution given in equation (5.5.4) is in multinomial form, the 

Dirichlet prior37-43 distribution is a natural choice for estimating the probability of the channels 

because it forms a conjugate prior42,43 with the multinomial distribution insofar as it combines with 

the likelihood function to form a posterior distribution that belongs to same Dirichlet family.  Thus, 

analytical solutions for the parameters can be easily formulated.  The process for extracting the 

lifetime from the estimated probabilities of the channels is the following.  We rewrite the likelihood 

distribution function from equation (5.5.4) as 𝑃(𝒄|𝝅)  in the following by considering the 

probabilities of the channels as unknown parameters given by 𝝅 = (𝜋1, 𝜋2, … , 𝜋𝐾), where ∑𝜋𝑗 =

1. 
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Let 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝐾) be the “pre-counts” (virtual counts42 or pseudo counts43) of the channels 

with probabilities (𝜋1, 𝜋2, … , 𝜋𝐾) before the evidence is collected; and let the sum of all “pre-

counts” be ∑𝛼𝑗 = Α𝑇 .  Then, the Dirichlet prior distribution is: 
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The “pre-counts,” 𝜶, act as hyperparameters for the 𝝅.  The Dirichlet prior mean and variance are 

given by 𝐸(𝜋𝑗) = 𝛼𝑗/Α𝑇 and Var(𝜋𝑗) = 𝛼𝑗(Α𝑇 − 𝛼𝑗)/Α𝑇
2 (Α𝑇 + 1), respectively.37  

The posterior is given by 
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and the posterior mean is given by 
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where, 𝜃𝑗 = 𝐸(𝜋𝑗) = 𝛼𝑗/Α𝑇 and 𝜙𝑗 = 𝑐𝑗/𝐶𝑇.  The posterior mean is thus the weighted average of 

the prior mean 𝜃𝑗  and the sample mean 𝜙𝑗  with respect to the total “pre-counts” and the total 

experimental counts, respectively.37,39  The most important point aspect of the Dirichlet prior is 

that, unlike the Gaussian and exponential priors, it does not combine the prior distribution of the 

lifetime parameter (𝜏) directly in the estimation.  Rather, the method of employing a Dirichlet prior 

evaluates the expected probability of the channels given the experimental counts. 

 In order to find the lifetime parameter, the bin-averaged time of the photon counts data 

was evaluated from the posterior and then compared with the sample quantity calculated from the 

convoluted model.  In order to do this, first, one needs to estimate the “pre-counts” of the channels. 

For a given set of initial parameters ( 𝜏𝑖𝑛𝑡, 𝑏𝑖𝑛𝑡), we propose to distribute the total number of 

experimental counts 𝐶𝑇 into the 𝐾 bins to estimate 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝐾) as follows, using equation 

(5.5.3):  
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where, ∑𝛼𝑗 = Α𝑇 = 𝐶𝑇 .  The expectation values of the bin probabilities 𝜋𝑗  are then calculated 

using equation (5.5.17) for all the channels.  Let 𝑡𝑎𝑣 represent the bin-averaged time calculated 

from the expectation value of the bin probability.  Therefore,  
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Similarly, for a given set of values of the parameters (𝜏, 𝑏), we can define another bin-averaged 

time (𝑡𝑎𝑣
′ ) for the convoluted model using the form of the probability 𝑝𝑗 given in equation (5.5.3):  
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 (5.20) 

Theoretically, the values of these two bin-averaged times (𝑡𝑎𝑣 and 𝑡𝑎𝑣
′ ) should be equal for the 

ideal data without any noise.  Therefore, for experimental data we can minimize the absolute 

difference (Δ𝑎𝑏𝑠) between 𝑡𝑎𝑣 and 𝑡𝑎𝑣
′ as shown in equation (5.5.21) to obtain the optimum values 

of the parameters, (𝜏𝑜𝑝𝑡, 𝑏𝑜𝑝𝑡).  

 abs av avt t= −   (5.21) 

The obtained optimal values are set as the new initial parameters, (𝜏𝑖𝑛𝑡, 𝑏𝑖𝑛𝑡) = (𝜏𝑜𝑝𝑡, 𝑏𝑜𝑝𝑡) and 

the entire procedure is repeated for several iterations until the results converge to a preset tolerance. 
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5.3.2  Computational methods 

The optimizations of the posterior distributions given in equations (5.5.12) and (5.5.13) are 

performed using codes written in MATLAB.  The GlobalSearch toolbox in MATLAB uses the 

“fmincon” solver to minimize the objective function with respect to the parameters; and in each 

calculation, a global minimum is reached.  The ranges of the parameters 𝜏 and 𝑏 are assigned as 

0.01 to 1.5 ns and -0.1 to 0.1 ns, respectively.  Within the specified ranges, we run our in-house 

routine with different initial values of the parameters and always retrieve the same results through 

the third decimal place.  

Gaussian and exponential priors 

Both equations (5.5.12) and (5.5.13) depend on the initial values of the hyperparameters.  

We employ two schemes to assign the values of the hyperparameters.  In the first, we use identical 

prior hyperparameters (i.e., fixed 𝜇0 and 𝜎0 for the Gaussian prior or fixed 𝜆0 for the exponential 

prior) for all the fifty decay traces in a set.  In the second, we update the prior hyperparameters for 

the analysis of  𝑁th decay trace using the calculated statistics of the results obtained from all the 

analyzed  𝑁 − 1 decay traces of that set according to the equation (5.5.22) given below.  In the 

second scheme we update the mean and the standard deviation after the analysis of 1 and 5 decay 

traces, respectively, to obtain sufficient statistics:  
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In both schemes, different combinations of the initial values of the hyperparameters are assigned. 
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Dirichlet prior 

As shown in equation (5.5.21), the absolute difference between 𝑡𝑎𝑣 and 𝑡𝑎𝑣
′  is minimized 

to obtain the new set of initial parameters (𝜏𝑖𝑛𝑡, 𝑏𝑖𝑛𝑡) = (𝜏𝑜𝑝𝑡, 𝑏𝑜𝑝𝑡).  The change of the value of 

the lifetime parameter is monitored; and convergence is obtained if the change between two 

successive iterations, 𝛿𝜏, is less than a preset tolerance value, which we set to 𝛿𝜏𝑡𝑜𝑙 = 10−4 ns.  If  

𝑏 < 10−4 in an iteration, then 𝑏 is set to zero.  (We find 𝑏 ≈ 0 using the maximum likelihood 

estimation and other Bayesian analyses considered here for our data sets.  Setting 𝑏 =  0 

simplifies the computation.)  All the calculations converged in ≤ 50 iterations.  To test the influence 

of the initial conditions the parameter space for the lifetime has been expanded (0.001 to 15 ns), 

and various initial values of 𝜏𝑖𝑛𝑡 are chosen within that range.  In all cases, the results converge to 

the same lifetime value.  

 

5.4  Results and Discussion 

5.4.1  Gaussian and exponential priors 

We assign the initial values of the hyperparameters for a decay trace and those values are 

mentioned in the corresponding figures and tables.   After obtaining the results from a certain 

number of traces, we calculate the statistics of the results for all the decay traces considered up to 

that point using equation (5.5.22).  The calculated statistics provide the hyperparameters for the 

subsequent analysis of the remaining decay traces.  After each step, a new set of hyperparameters 

is obtained.  Estimated lifetimes using this scheme are presented in Figure 5.1 for all 50 decay 

traces for each set of data having a total number of 20, 200, and 20000 counts, respectively.  Each 

panel is labeled with the initial values of 𝜇0 and 𝜎0.  The histograms of the lifetimes obtained by 
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using Gaussian and exponential priors with different sets of initial hyperparameters are given in 

Figure 5.2.  Statistics are summarized in Table 5.1.  

For a Gaussian prior, where 𝜎0 = 0.5 ns, the results converge to the correct mean value as 

more and more decay traces are analyzed for a data set.  As a result, the distribution of the estimated 

lifetimes becomes very narrow, with standard deviations of 8%, 2%, and less than 1% of the mean 

lifetime for the data sets with total number of 20, 200, and 20000 counts, respectively, as shown 

in Figure 5.2a and Table 5.1.  The identical-prior counterpart (see SI) has much wider 

distributions, as noted in the previous section.  As in the identical-prior counterpart, however, the 

estimated lifetime is not very sensitive to the initial values of the prior mean, 𝜇0, when the initial 

value of the prior standard deviation 𝜎0 is wide.  For an exponential prior, the convergence is not 

as rapid as in the case of the Gaussian prior using this strategy (Figure 5.2b).  Again, the initial 

choice of 𝜆0 has no influence on the estimated lifetime for the three data sets.  These results also 

suggest that the Gaussian prior is preferable to the exponential prior.  

This example of updating the prior distribution using the results from data sets with the 

same number of total counts is purely illustrative.  The point is that the fitting results can be 

improved by employing data collected using similar experimental conditions and choosing the 

prior hyperparameter accordingly.  Once obtained, higher-quality data (e.g., from a decay trace 

having 20000 total counts) can be used to extract the hyperparameters for the prior when analyzing 

lesser-quality data (e.g., from a decay trace having 20 total photon counts).  Further updating of 

the prior might even be unnecessary, since it is possible that one data set of sufficiently high quality 

can provide a suitable prior.  Such higher-quality data sets may be obtained from bulk solutions or 

from imaging data from STED experiments, for example, using pixels of higher intensity where 

the experimental conditions and fluorophore environment are similar.  
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5.4.2  Dirichlet Prior 

Using the strategy of minimization of the absolute difference between two bin-average time 

(𝑡𝑎𝑣  and 𝑡𝑎𝑣
′ ) given in equation (5.5.21) for the Dirichlet prior, each of the decay traces was 

analyzed; and convergence was obtained when 𝛿𝜏 < 10−4  ns.  The lifetimes of the individual 

traces are given in Figure S5.3 for all the decay traces.  The histograms of the lifetimes obtained 

from an analysis employing the Dirichlet prior are given in Figure 5.3 for all the data traces for a 

given initial condition.  The statistics of the results for the fifty decay traces of each set are 

summarized in Table 5.2.  The value of the initial lifetime (𝜏𝑖𝑛𝑡), which has been used to estimate 

the “pre-counts” (𝜶) for the Dirichlet prior at the beginning of the iteration, is 0.4 ns; and it is 

given in Figure 5.3, Figure S5.3, and Table 5.2.  

To test the influence of the initial value, the parameter space for the lifetime was expanded 

(0.001 ns ≤ τint ≤  15 ns), and various initial values of 𝜏𝑖𝑛𝑡 are chosen within that range.  In all 

cases, the results converge to the same lifetime value.  An example is shown in Figure S5.4, where 

the convergence is tested with various initial conditions (𝜏𝑖𝑛𝑡 ) for a representative data trace 

randomly chosen from each of the data set with total number of counts 20, 200 and 20000 

respectively.  

 It can be seen (Tables 5.2 and S5.1) that the mean and the standard deviation of the 

lifetimes obtained for all the fifty decay traces in a set using a Dirichlet prior are comparable to 

those obtained using a Gaussian prior when 𝜎0 is 0.5 ns in the case of the three values (0.2 ns, 0.5 

ns and 1.0 ns) of  𝜇0. When 𝜎0 is 0.3 ns, the statistical results of the lifetimes are comparable to 

those we obtained from the Dirichlet prior for all cases except that where 𝜇0 is 1.0 ns and the data 

set has 20 total counts.  Here, the Gaussian prior yields 0.6 ± 0.1 ns and the Dirichlet prior yields 

0.5 ± 0.1 ns.  As mentioned above, the statistical results of the lifetimes for the Gaussian prior 
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analysis depends on the value of 𝜇0 when 𝜎0 is 0.1 ns for the data set with a total number of counts 

of 200 or less.   On the other hand, the statistical results of the lifetimes obtained from the Dirichlet 

prior analysis are comparable to those we obtained using an exponential prior for all cases except 

that where the exponential prior parameter (𝜆0) is 5.0 ns-1 and the data set has 20 total counts.  

Here, the exponential prior yields 0.4 ± 0.1 ns.   

Thus, the advantage of employing a Dirichlet prior is not so much for the result it yields 

but rather because its use does not require any a priori knowledge of the lifetime of the sample.  

The change of the value of the lifetime parameter between two successive iteration, 𝛿𝜏, should 

converge to yield the optimized results from any given starting point (initial value) for all the three 

data sets we have considered with total number of counts 20, 200, and 20000, respectively.  The 

Gaussian prior, on the other hand, can yield much smaller standard deviations; but its use requires 

prior knowledge of the parameters.  In the case of the exponential prior, the initial condition (the 

value of the hyperparameter, 𝜆0) has little influence on the estimated lifetimes for the data set with 

a total count number of 20.    The Dirichlet prior, being a natural conjugate prior for the multinomial 

distribution, combines with the joint probability of the data obtained in the photon counting 

experiments to estimate the posterior of channel probability parameters analytically.  It also differs 

significantly from the Gaussian and exponential prior cases in how the parameters are evaluated.     

5.5  Conclusions  

We have formulated and demonstrated the usefulness of a Bayesian approach for analyzing 

time-correlated, single-photon counting data to estimate the mean fluorescence lifetime of a well-

characterized fluorophore, rose bengal.  Although the exponential prior is less sensitive to the 

initial values of the hyperparameters, the Gaussian prior yields a much narrower distribution of 

the estimated lifetime, and thus, a more precise value of the retrieved value of the fluorescence 
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lifetime.  The greatest advantage, however, of the Dirichlet prior is that for the cases we 

investigated, the same optimized results are obtained regardless of the initial conditions for the 

prior parameters.  Thus, an analysis strategy is suggested in which parameter space can rapidly be 

searched with the Dirichlet prior; and a subsequent, more refined search may be carried out with a 

Gaussian or exponential prior, if necessary.  Such a strategy may assist in the design and analysis 

of imaging experiments, especially those that are subdiffraction-limited, where small sample 

volumes and the possibility of photodamage necessitate the collection of sparse data sets 
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5.8  Tables and Figures  

Table 5.1 

Fitting results for three sets of 50 decay traces employing a Bayesian analysis using updated 

prior distributions. 

 

total number of 

counts 

mean lifetime ± one standard deviation (ns)* 

Gaussian prior  𝜇0 = 0.2 ns, 

 𝜎0 = 0.5 ns 

𝜇0 = 0.5 ns, 

 𝜎0 = 0.5 ns 

𝜇0 = 1.0 ns, 

 𝜎0 = 0.5 ns 

20 0.48 ±  0.04 0.48 ±  0.04 0.49 ±  0.04 

200 0.49 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 

20000 0.489 ± 0.001 0.489 ± 0.001 0.489 ± 0.001 

Exponential prior  𝜆0 = 5.0 ns-1 𝜆0 = 2.0 ns-1 𝜆0 = 1.0 ns-1 

20 0.5 ±  0.1 0.5 ±  0.1 0.5 ±  0.1 

200 0.49 ± 0.03 0.49 ± 0.03 0.49 ± 0.03 

20000 0.490 ± 0.004 0.490 ± 0.004 0.490 ± 0.004 

 

* Mean lifetime ± one standard deviation (ns) of fifty decay traces calculated using a Bayesian 

analysis for three data sets with a total number of counts of 20, 200, and 20000, respectively.  The 

priors for a data trace in a set are updated using the statistics of the results of all the analyzed decay 

traces of that set, as given in equation (5.5.22). The type of prior and the initial values of the 

hyperparameters are given in the shaded rows. 
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Table 5.2 

Fitting results for three sets of 50 decay traces employing a Bayesian analysis using Dirichlet 

prior distributions. 

 

total number of 

counts 

mean lifetime ± one standard deviation (ns)* 

Dirichlet prior  𝜏𝑖𝑛𝑡 = 0.4  ns, 𝛼𝑗 = 𝐶𝑇𝑝𝑗 

20 0.5 ±  0.1 

200 0.50 ± 0.04 

20000 0.489 ± 0.004 

 

* Mean lifetime ± one standard deviation (ns) of fifty decay traces calculated using a Bayesian 

analysis for three data sets with a total number of counts of 20, 200, and 20000, respectively. The 

absolute difference between 𝑡𝑎𝑣  and 𝑡𝑎𝑣
′  shown in equation (5.5.21) is minimized to obtain 

optimum values of the lifetime and the convergence is obtained if the change between two 

successive iteration, 𝛿𝜏 < 10−4 ns.  The initial parameter, 𝜏𝑖𝑛𝑡,  and the estimation of “pre-counts” 

are given in the second row.  
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Figure 5.1.  Estimated lifetimes of all fifty decay traces obtained by the Bayesian analysis where 

priors are updated following equation (5.5.22).  The results using a Gaussian prior are shown in 

column (a); and the results from an exponential prior, in column (b). Corresponding 

hyperparameters are given at the top of each panel.   
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Figure 5.2.  Histograms of the estimated lifetimes of all fifty decay traces obtained by the Bayesian 

analysis using updated priors following equation (5.5.22).  Column (a) represents the results using 

a Gaussian prior; and column (b), the results using an exponential prior.  Corresponding 

hyperparameters are given at the top of each panel.  The mean and the standard deviation of the 

estimated lifetime are given in each histogram.  
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Figure 5.3.  Histograms of the estimated lifetimes of all fifty decay traces obtained by the Bayesian 

analysis using a Dirichlet prior distribution.  The initial values of the lifetime, 𝜏𝑖𝑛𝑡  , and the 

estimation of the “pre-counts” are given at the top of the panel.  The mean and the standard 

deviation of the estimated lifetimes are given in each histogram.  

 

 

5.9  Supplementary Information 

5.9.1  Derivation of the probability and the estimated counts in a bin 

It can be assumed that for a single emissive species the signal from an excited state 

fluorophore follows a single exponential decay law.  If 𝑡𝑗  is the time after the excitation 

corresponding to the jth time channel, then the fluorescence signal corresponding to that time is 

 
( )

( )
jt

jF t e 
−

  
(S5.1) 

where 𝜏  is the mean excited-state lifetime (i.e., the lifetime) of the fluorophore.  Let 𝑪 =
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proportional to the discrete convolution of the IRF and the model for the fluorescence decay given 

in equation (S5.1).  
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where, 𝑏 is a parameter that assumes continuous values, 𝑗0 is an integer, and the relation between 

them is given by b = j0ϵ + ζ, where ζ lies between 0 and ϵ.  b describes the linear shift between the 

instrument response function and the fluorescence decay.1-4  The probability that a photon is 

detected in the range 𝑡1 ≤  𝑡 ≤ 𝑡𝑚𝑎𝑥 =  𝑡𝐾   must be ∑ 𝑝𝑗𝑗 = 1.  We have, therefore: 
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The normalization factor in the denominator is independent of 𝑗; and, hence, the “dummy index,” 

k, is inserted while retaining j0, as this constant, unknown shift applies for all bins.  The 

denominator is proportional to the total number of convoluted counts generated with the IRF.  

Let the set of predicted counts from the convoluted exponential model be represented 

as �̂�  = (�̂�1, �̂�2, … , �̂�K), where  �̂�𝑗  is the predicted number of counts in the jth bin.  �̂�𝑗 is directly 

proportional to the probability that a photon is detected in that bin.  The area under the decay 

curves obtained from the observed counts 𝑪 and from the predicted counts �̂� must be conserved 

during optimization of the fitting parameters.  In other words, the total number of predicted counts 

must be equal to the total number of observed photon counts.  The number, therefore, of predicted 

counts in the jth bin is given by: 
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where 𝐶𝑇 = ∑ 𝑐𝑗𝑗  .   

5.9.2  Posterior probability of the parameters in the Bayesian framework  

The posterior distribution of the parameters 𝜷 for the given “evidence”, 𝑬 is given by:  
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Since 𝑃(𝑏) is constant, it can be eliminated leaving another constant in the denominator, e.g., 

𝑃′(𝑬).  If we substitute the Gaussian prior distribution from equation (5.8) and the expression for 

𝑃(𝑬|𝜷) from equation (5.6), we obtain:  
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The logarithm of the posterior distribution can be written as: 
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Condensing all the terms that are independent of the parameters 𝜏 and 𝑏 into 𝛾1, we obtain 
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Similarly, if we choose the exponential prior for the mean lifetime, then we have  
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where 𝛾2 is another constant independent of the parameters 𝜏 and 𝑏.  

5.9.3  Discussion of the results: identical prior for each data set  

 As mentioned in the text, it is possible to perform the Bayesian analysis by not updating 

the hyperparameters the prior from one decay trace to the other.  Here, each of the fluorescence 

decay traces was analyzed using Gaussian (12) and exponential (13) priors with different initial 

values of the hyperparameters.  The estimated lifetimes are shown in Figure S5.1 for all 50 decay 

traces of each set of data with a total number of counts of 20, 200, and 20000, respectively.  The 

initial values of 𝜇0 and 𝜎0 are given in each panel.  The histograms of the lifetimes obtained by 

using Gaussian and exponential prior distributions with different sets of hyperparameters are given 

in Figure S5.2.  The statistics of the histograms are summarized in Table S5.1.  

 In the case of a Gaussian prior, these results indicate that if its 𝜎0 is large (e.g., 0.5 ns in 

the case of Rb), then the results approach the ML estimation, as observed previously1,5.  In this 

case, the estimated lifetime is not very sensitive to the initial values of the prior mean, 𝜇0 (Figure 

S5.2c); and in all cases, we retrieved the correct lifetime with approximately 20%, 6%, and 1% 

standard deviation for data sets with 20, 200, and 20000 total counts, respectively.  On the other 

hand, as seen from the central panel of Figure S5.2a, if the prior standard deviation is small and 

an appropriate prior mean is chosen, then we obtain a much narrower distribution (10% standard 

deviation) for the lifetime with the correct mean value (0.49 ns) even with 20 counts.  (An 

“appropriate prior mean” is a value close to the correct answer.  A rough estimation of the lifetime 

can be obtained using methods such as ML.   It is necessary, however, to be careful when choosing 

such priors, since in the case of small standard deviations of the prior, the estimated lifetime 

depends on the initial prior mean.)  For data with a higher total number of counts, this problem 
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does not appear since the larger number of evidence dominates over the choice of the prior.  

Therefore, the prior obtained from other experimental observations, where the experimental 

conditions are nearly identical, are the most useful to estimate the lifetime of the sample of interest 

in that particular experimental conditions, as we discuss in the next section.     

 In the case of an exponential prior, there is only one hyperparameter, the inverse mean 

lifetime, 𝜆0 = 1/𝜇0.  As seen from, Figure S5.2d, the initial choice of the parameter 𝜆0 has very 

little influence on the estimated lifetime for the data set with a total number counts of 20.  For the 

other two sets with a higher total number of counts, the choice of 𝜆0 has no effect on the results. 

This can be considered as an advantage over the Gaussian prior.  On the other hand, the distribution 

of the estimated lifetime is wider than that of its Gaussian counterpart, where the narrow standard 

deviation of the prior can be defined.  If, therefore, suitable parameters for the prior distribution 

are obtained, then the Gaussian prior seems to be preferable. 
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5.9.4  Supplementary tables and figures 

Table S5.1 

Fitting results for three sets of 50 decay traces employing a Bayesian analysis using identical 

prior distributions. 

 

total number of 

counts 

mean lifetime ± one standard deviation (ns)* 

Gaussian prior  𝜇0 = 0.2 ns, 

 𝜎0 = 0.1 ns 

𝜇0 = 0.5 ns, 

 𝜎0 = 0.1 ns 

𝜇0 = 1.0 ns, 

 𝜎0 = 0.1 ns 

20 0.35 ±  0.06 0.49 ±  0.05 0.93 ±  0.05 

200 0.46 ± 0.03 0.49 ± 0.03 0.57 ± 0.04 

20000 0.490 ± 0.004 0.490 ± 0.004 0.491 ± 0.004 

Gaussian prior  𝜇0 = 0.2 ns, 

 𝜎0 = 0.3 ns 

𝜇0 = 0.5 ns, 

 𝜎0 = 0.3 ns 

𝜇0 = 1.0 ns, 

 𝜎0 = 0.3 ns 

20 0.5 ±  0.1 0.5 ±  0.1 0.6 ±  0.1 

200 0.49 ± 0.03 0.49 ± 0.03 0.50 ± 0.03 

20000 0.490 ± 0.004 0.490 ± 0.004 0.490 ± 0.004 

Gaussian prior  𝜇0 = 0.2 ns,  

𝜎0 = 0.5 ns 

𝜇0 = 0.5 ns,  

𝜎0 = 0.5 ns 

𝜇0 = 1.0 ns, 

 𝜎0 = 0.5 ns 

20 0.5 ±  0.1 0.5 ±  0.1 0.5 ±  0.1 

200 0.49 ± 0.03 0.49 ± 0.03 0.50 ± 0.03 

20000 0.490 ± 0.004 0.490 ± 0.004 0.490 ± 0.004 

Exponential prior  𝜆0 = 5.0 ns-1 𝜆0 = 2.0 ns-1 𝜆0 = 1.0 ns-1 

20 0.4 ±  0.1 0.5 ±  0.1 0.5 ±  0.1 

200 0.49 ± 0.03 0.49 ± 0.03 0.49 ± 0.03 

20000 0.490 ± 0.004 0.490 ± 0.004 0.490 ± 0.004 

 

* Mean lifetime ± one standard deviation (ns) of fifty decay traces calculated using a Bayesian 

analysis for three data sets with 20, 200, and 20000 total counts, respectively.  The priors are 

identical for all fifty decay traces.  The type of prior and the values of the hyperparameters are 

given in the shaded rows. 
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Figure S5.1.  Estimated lifetimes of all decay traces obtained by the Bayesian analysis where 

identical priors are used. The results from the Gaussian prior are presented in (a)-(c); and the results 

from the exponential prior, in (d).  Corresponding hyperparameters are given at the top of each 

panel.  The data sets with 20, 200, and 20000 total counts are gray, black, and red, respectively.  
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Figure S5.2.  Histograms of the estimated lifetimes of all the decay traces obtained by the Bayesian 

analysis where identical priors are used.  (a)-(c) represent the results using a Gaussian prior; and 

(d), the results using an exponential prior.  Corresponding hyperparameters are given at the top of 

each panel.  The mean and the standard deviations of the estimated lifetimes are given in each 

histogram.  
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Figure S5.3.  Estimated lifetimes of all fifty decay traces obtained by the Bayesian analysis using 

a Dirichlet prior distribution. The initial values of the lifetime 𝜏𝑖𝑛𝑡 and estimation of “pre-counts” 

are given at the top of the panel.   
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Figure S5.4.  A representative trace from each data set is analyzed using a Dirichlet prior with 

various initial values (𝜏𝑖𝑛𝑡).  The convergence curve for the lowest (0.001 ns) and the highest (15 

ns) initial values that we considered are indicated by arrows.  Regardless of the initial condition, 

all curves converge to the same value.   
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CHAPTER 6.  EXPLOITING FLUORESCENCE SPECTROSCOPY TO IDENTIFY 

MAGNETIC IONIC LIQUIDS SUITABLE FOR THE ANALYTICAL SEPARATION OF 

OLIGONUCLEOTIDES 

 

The modified content of this chapter to be submitted for publication 

Kalyan Santra1, Kevin D. Clark1, Nishith Maity1, Jacob W. Petrich*,1, and Jared L. Anderson1 

 

6.1  Abstract  

Magnetic ionic liquids (MILs), which incorporate paramagnetic ions, promise to minimize manual 

user intervention, decrease extraction times, and facilitate rapid recovery of the analyte-enriched 

extraction solvent.  If, however, fluorescence is employed in the downstream analysis of an analyte 

tagged with a fluorophore, the paramagnetic ion may quench fluorescence by introducing new 

nonradiative processes.  Thus, it is necessary to employ a paramagnetic ion that offers a 

compromise between possessing a high magnetic moment and not introducing new nonradiative 

channels.   Mn(II), Fe(III), Co(II), and Ni(II) are considered in combination with phosphonium 

cations and anionic ligands based upon halides or hexafluoroacetylacetonate.  Among the 

possibilities examined, MILs containing Mn(II) provide the best alternative for a model system 

involving DNA. 

_______________________________________ 

*To whom correspondence should be addressed. Email: jwp@iastate.edu 

1Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA  
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6.2  Introduction 

Nucleic acids play a myriad of roles in biological systems to govern the growth 

development of all living organisms.  Modern DNA detection and sequencing technologies have 

made possible the extremely rapid acquisition of genetic information and are poised to drive the 

expansion of nucleic acid-based diagnostics,1 personalized medicine,2 and biomarker discovery.3 

As a result, the isolation and purification of DNA from biological samples has become a significant 

bottleneck in nucleic acid analysis. Conventional phenol-chloroform liquid-liquid extraction 

(LLE) or silica-based solid phase extraction (SPE) methods are limited by their ability to isolate a 

sufficient quantity of highly pure DNA that is suitable for sensitive downstream bioanalytical 

techniques such as polymerase chain reaction (PCR) amplification and fluorescence imaging.4,5 

Apart from variable DNA recoveries and purities,6 the time-consuming and laborious sample 

handling procedures in LLE and SPE methods severely reduce sample throughput.7 

Recently, DNA extraction methods involving ionic liquids (ILs) have shown great promise 

to improve the speed, efficiency, and specificity of DNA analysis.8,9 ILs are a class of molten salts 

comprised of organic/inorganic cations and anions with melting temperatures at or below 100 °C. 

The unique ability to customize the structure of IL cations and anions through accessible synthetic 

methods is an attractive feature of these solvents that has led to their successful implementation as 

DNA extraction solvents,10 PCR additives,11 and nucleic acid preservation media.12 Careful design 

of the IL structure has also generated a new class of solvents know as magnetic ionic liquids 

(MILs) that contain paramagnetic components in their chemical structure.13,14,15 Unlike ferrofluids 

that are colloidal suspensions of magnetic particles in a carrier solvent, MILs are neat liquids that 

respond to applied magnetic fields.16 The convergence of the liquid nature, magnetic susceptibility, 

and tunable structure of MILs represents a distinct advantage relative to conventional ILs by 
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providing a solvent that can be employed in magnet-based sample preparation workflows to 

minimize manual user intervention, decrease extraction times, and facilitate rapid recovery of the 

analyte-enriched extraction solvent.  

The extraction of DNA using MIL solvents has recently been demonstrated as a rapid, 

magnet-based alternative to conventional DNA sample preparation methods. Several 

phosphonium and ammonium-based MILs with anionic components based on paramagnetic 

tetrahaloferrate(III) complexes were investigated to reveal that MILs with different chemical 

structures provided unique DNA solvation/extraction capabilities.17 To capitalize on the rapid and 

selective extractions afforded by MIL solvents, a method coupling the extraction procedure with 

downstream PCR amplification and gel electrophoresis was developed to analyze directly the 

DNA enriched within the MIL.18  Although it was possible to mitigate PCR inhibition caused by 

the Fe(III) component of the MIL by designing an appropriate PCR buffer system, the Fe(III)-

based MILs precluded real-time fluorescence detection of the accumulation of PCR amplification 

products (i.e., real-time quantitative PCR or qPCR), even under identical buffer conditions, 

because it strongly quenched the fluorescence of the tagged DNA. 

Since fluorescence detection is central to quantification or imaging applications in DNA 

analysis, the identification of MIL extraction solvents that are compatible with fluorescence-based 

DNA assays is highly desirable.  As the undesirable fluorescence quenching may arise from 

intersystem crossing promoted by spin-orbit coupling induced through the “heavy-atom” effect by 

the paramagnetic atom, excited-state electron transfer to or from the fluorescent label to any 

component of the MIL, or from Förster energy transfer from the label, such an identification 

requires assessing these quenching mechanisms as a function of various paramagnetic metals.  

Here, we examine the roles of the paramagnetic species Fe(III), Co(II), Mn(II), and Ni(II) 
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constituting part of a halide anion or a hexafluoroacetylacetonate (hfacac) anion.  These anions 

differ structurally from each other considerably and hence vary the interactions between the 

paramagnetic ions and the fluorescent tag (cyanine5 carboxylic acid, Cy5).  Quenching studies are 

employed to evaluate the interactions of MILs with the Cy5 to identify MILs that are appropriate 

for direct spectroscopic-based analysis of extracted DNA--and possibly other biological materials 

such as RNA or proteins.  

 

6.3  Materials and Methods 

 The ILs, MILs, and fluorophores used for spectroscopic measurements are presented in 

Figure 6.1.  (See the caption to the Figure for abbreviations.)  Hydrophobic MILs containing metal 

halide anions were synthesized according to previously reported procedures.14,19 Briefly, the 

corresponding metal halide salt was mixed with [P66614
+][Cl−] at a 2:1 mole ratio (for Co and Mn-

based MILs) or 1:1 mole ratio (for Fe(III)-based MILs) in methanol for 24 h.  After solvent 

evaporation, the MIL was dried in a vacuum oven for 48 h. Syntheses of  [P66614
+][Co(hfacac)3

−], 

[P66614
+][Ni(hfacac)3

−], and [P66614
+][Mn(hfacac)3

−] were performed as reported.20  For 

purification, the hfacac-based MILs were dissolved in diethyl ether and washed five times with 40 

mL of deionized water, or until the addition of AgNO3 to the water layer yielded no precipitation.  

All MILs were dried at 50 °C in vacuo for 48 h prior to spectroscopic measurements.  

 Cy5 and Coumarin 153 (C153) were obtained from Lumiprobe and Exciton, Inc., 

respectively. Cy5-tagged DNA (5´-Cy5-ACAGACTGATGTTGA-3´, subsequently referred as 

Cy5-DNA) was obtained from Integrated DNA Technologies (Coralville, IA).  All chemicals and 

organic solvents (Fischer Scientific, HPLC or ACS grade) were used as received. Samples were 

prepared by dissolving the fluorophore or Cy5-DNA in a small volume (~10 µL) of methanol or 



www.manaraa.com

215 

 

DMSO and added dropwise to the MILs.  The samples were then dried at room temperature to 

constant mass using a Mettler Toledo NewClassic MF MS105 microbalance (Columbus, OH, 

USA) with 0.01-mg readability. 

Steady-state absorption spectra were recorded using an Agilent 8453 UV-visible 

spectrometer (Agilent Technologies) with 1-nm resolution. Steady-state fluorescence spectra were 

obtained on a Fluoromax-4 spectrometer (Horiba Scientific) and corrected for lamp spectral 

intensity and detector response.  A 3-mm path-length quartz cuvette was used for absorption and 

fluorescence measurements.  Samples containing Cy5 and Cy5-DNA were excited at 600 nm; 

those containing C153, 400 nm.  

Time-resolved data were collected using a home-made, time-correlated, single-photon 

counting (TCSPC) instrument using a SPC-630 TCSPC module (Becker & Hickl GmbH).  A 

collimated Fianium pulsed laser (Fianium Ltd, Southampton, UK) at a 2-MHz repetition rate, was 

used to excite the sample at 550 nm.  The excitation beam was vertically polarized.  Emission was 

detected at the “magic angle” (54.7°) with respect to the excitation using a 590-nm, long-pass 

filter.  The instrument response function (IRF) was measured by collecting scattered light at 550 

nm (without the emission filter).  The full-width at half-maximum of the instrument function was 

typically ~120 ps.  TCSPC data were collected in 1024 channels (bins), providing a time resolution 

of 19.51 ps/channel, and a full-scale time window of 19.98 ns.  The number of counts in the peak-

channel was set to 65535 unless otherwise indicated.  A 3-mm path-length quartz cuvette was used 

for the lifetime measurements. 
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6.4  Results and Discussion 

6.4.1  The role of Förster resonant energy transfer 

 The rate of nonradiative energy transfer, 𝑘𝐸𝑇, from a fluorescent donor to an acceptor was 

described by Förster21-24:  𝑘𝐸𝑇 =
1

𝜏𝐷 
(
𝑅0

𝑅
)
6

; where 𝜏𝐷 is the unquenched fluorescence lifetime of 

the donor, and, 𝑅 is the distance between donor and acceptor; and 𝑅0 is referred to as the “critical 

distance,” defined by: 

 𝑅0
6 =

9000 ln(10) 𝜙𝐷 𝜅
2

128 𝜋5 𝑛4𝑁𝐴
∫ 𝑓𝐷(�̅�)𝜖𝐴(�̅�)�̅�

−4𝑑�̅�
∞

0

 
(6.1) 

where 𝑓𝐷(�̅�) = 𝐹(�̅�)/ ∫ 𝐹(�̅�)𝑑�̅�
∞

0
, is the fluorescence intensity of the unquenched donor 

normalized to unit area on a wavenumber scale.  The other parameters are:  𝜙𝐷, the fluorescence 

quantum yield of the donor; 𝜅2, the orientation factor, assumed to be 2/3 for randomly oriented 

donors and acceptors; 𝜖𝐴, the decadic molar extinction coefficient; 𝑛, the refractive index of the 

medium; and 𝑁𝐴, Avogadro’s number.  Quantifying the rate of nonradiative energy transfer thus 

reduces to evaluating 𝑅0, which for random or nearly randomly-oriented samples is determined by 

the overlap of the emission spectrum of the donor and the absorption spectrum of the acceptor.  

Figure 6.2 provides an example for Cy5 and Co(II).  We have evaluated 𝑅0 for Cy5 with Mn(II), 

Fe(III), Co(II), Ni(II), and hfacac and [P66614
+], with or without the paramagnetic ions.  Values of 

𝑅0 are compiled in Table 6.1.  Co(II) is the only component of the MILs investigated here that has 

a significant 𝑅0:  for the isolated chloride salt of Co(II), 𝑅0  =  58.1 Å, larger than nearly a factor 

of two or more than any other ligand.  The ability, then, of Fe(III), for example, to quench Cy5 so 

efficiently17,18 must lie in mechanisms other than nonradiative energy transfer.  Distinguishing the 

two most likely, intersystem crossing and excited-state electron transfer, lies beyond the scope of 
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this investigation.  But it is possible, however, to quantify the efficiency of quenching by the 

paramagnetic ions, which is done in the following sections. 

6.4.2  Quantifying bimolecular quenching of fluorescence 

Bimolecular quenching processes may occur, for example, by the collisions of the excited-

state fluorophore with other molecules, which enhance nonradiative rates or introduce new ones.  

It may also occur through the formation of nonfluorescent ground-state complexes, which is 

referred to as static quenching.  Both collisional and static quenching can be quantified by Stern-

Volmer equations.25-39  Collisional quenching (also referred to as dynamic quenching) can be 

quantified by a plot of fluorescence intensity or fluorescence lifetime as a function of quencher 

concentration: 

 , (6.2) 

where 𝐹  and 𝐹0 are the integrated fluorescence intensities of the corrected spectra when 

concentrations of the quencher are [𝑄] and 0, respectively; 𝜏 and 𝜏0 are the fluorescence lifetimes 

of the fluorophore at the respective concentrations.  𝐾𝐷 is the Stern-Volmer quenching constant or 

dynamic quenching constant.  

In the case where the quencher forms a nonfluorescent ground-state complex with the 

fluorophore, the fluorescence intensity also decreases.  The mechanism of the decrease is different, 

however, because in the simplest example of the process, the ground-state complex is 

nonfluorescent; and the uncomplexed fluorophores have the unquenched lifetime.  (Another 

signature of this process is that the absorption spectrum changes with respect to that of the 

uncomplexed fluorophore.)  This type of quenching is described by a static quenching model, 

whose form is identical to that of equation (6.2) if intensities are used:  

0 0 [ ]1 D

F
K

F
Q




== +
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    and    (6.3) 

where 𝐾𝑆  is the association constant or the static quenching constant.  Clearly, however, it is 

possible for quenching to occur by both collisions of the quencher with the excited-state 

fluorophore and its complexes with the ground-state fluorophore.  In such cases the Stern-Volmer 

plot shows an upward curvature, which is nonlinear in the quencher concentration:  

    and    (6.4) 

Equation (6.4) can be transformed into the following linear form: 

  (6.5) 

Alternatively, the first part of equation (6.4) can be modified so that it does not use the lifetime 

data  

 , (6.6) 

where, 𝐾app = (𝐾𝐷 +𝐾𝑆) + 𝐾𝐷𝐾𝑆[𝑄] .  The apparent quenching constant 𝐾app is calculated using 

equation (6.6) and plotted against [𝑄] to obtain the 𝐾𝐷 and 𝐾𝑆 from the slope and the intercept.  

If the association of the fluorophore with the quencher is weak, then an apparent static 

quenching is observed along with the dynamic quenching.  Then we have: 

  
(6.7) 

where 𝑉 is the volume of the sphere of action, within which the quencher can quench the excited 

fluorophore.  If, however, the interaction of the quencher with the fluorophore is very strong, V 

can be incorporated into equation (6.5): 
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6.4.3  Fluorescence quenching of Cy5 by phosphonium metal-halide MILs 

 

The steady-state and the time-resolved Stern-Volmer plots for fluorescence quenching of 

Cy5 in DMSO are presented in Figures 6.3-6.4 and in Figure S6.1 for the [P66614
+]2[CoCl4

2−], 

[P66614
+]2[MnCl4

2−], and [P66614
+][FeCl4

−] MILs, respectively.  The quenching parameters obtained 

from equations (6.2)-(6.8) are summarized in Table 6.2.  Among these three MILs, 

[P66614
+]2[CoCl4

2−] is the most efficient quencher of Cy5 fluorescence.  A plot (Figure 6.3d) of 

𝐹0/𝐹 against its concentration is highly nonlinear with an upward curvature, while a similar plot 

using 𝜏0/𝜏 plot (Figure 6.3e) is linear with a nonzero slope.  From this complex quenching of Cy5 

by [P66614
+]2[CoCl4

2−], the dynamic quenching constant can be extracted:  𝐾𝐷 = 82 ± 3 M-1.  The 

plot (Figure 6.3f) of (𝐹0/𝐹)/(𝜏0/𝜏) using equation (6.8) yields 𝐾𝑆 = 1200 ± 100 M-1 and 𝑉 =

520 ± 30 M-1 indicating a very large contribution from ground-state complex formation with the 

quencher.  Also, as expected, the absorption spectrum at 600 nm (Figure 6.3a) is significantly 

altered in the presence of the quencher.  Among the three MILs, the least efficient quencher of 

Cy5 in DMSO is [P66614
+]2[MnCl4

2−].  The plot of  𝜏0/𝜏 against its concentration (Figure 6.4e) is 

linear, providing a dynamic quenching constant, 𝐾𝐷 = 0.2 ± 0.1  M-1, which is negligible 

compared to that obtained for [P66614
+]2[CoCl4

2−].  The plot obtained from equation (6.5) provides 

the static quenching constant, 𝐾𝑆 = 1 ± 1  M-1, indicating a negligible interaction of 

[P66614
+]2[MnCl4

2−] with Cy5.  Finally, the time-resolved Stern-Volmer plot (Figure S6.1e) for 

[P66614
+][FeCl4

−] yields 𝐾𝐷 = 6.0 ± 0.2 M-1, while the linear plot (Figure S6.1f) using equation 

(6.5) yields 𝐾𝑆 = 30 ± 2 M-1. Therefore, formation of the ground-state complex is the primary 

contributor to the overall quenching, which can also be noted from the considerable change of 
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absorption spectra near 600 nm.  The overall quenching efficiency, however, is much less than that 

of [P66614
+]2[CoCl4

2−] and higher than that of [P66614
+]2[MnCl4

2−].  The extent of quenching of Cy5 

in neat [P66614
+][FeCl4

−] is demonstrated in Figure S6.4 and exhibits a thousand-fold decrease of 

the fluorescence intensity compared to Cy5 in methanol at the same concentration (~1 𝜇𝑀).  The 

fluorescence lifetime of Cy5 measured in neat [P66614
+][FeCl4

−] is ~150 ps compared to 810 ps in 

methanol.  On the other hand, the fluorescence intensity of Cy5 in neat [P66614
+]2[MnCl4

2−] 

increases by a factor of two with respect to methanol and its fluorescence lifetime is 2.04 ns 

(Figure S6.5).  Not only does Mn(II) not quench the fluorescence of Cy5, but the phosphonium-

Mn(II) chloride MIL increases the fluorescence intensity and lifetime of Cy5.  These increases are 

most likely attributable to the high viscosity of the solvent, which reduces the flexibility40 of Cy5. 

It is likely that a significant nonradiative pathway of Cy5 is torsion about its double bonds (Figure 

6.1) similar to the situation for the well-studied molecule, stilbene.22,41,42  For neat 

[P66614
+][FeCl4

−], the viscosity20 is 650 cP at 25 °C, whereas it is 75230 cP at 25 °C for  

[P66614
+]2[MnCl4

2−].  

To elucidate the origin of the quenching mechanism of the phosphonium metal-halide 

MILs, we constructed Stern-Volmer plots of Cy5 dye using the nonmagnetic ionic liquid, 

[P66614
+][Cl−], as a control (Figure 6.6).  The Stern-Volmer plot, within experimental error, is flat, 

demonstrating that [P66614
+][Cl−] does not quench Cy5:  𝐾𝐷 = −1 ± 1 M-1 (Table 6.3).  This 

confirms that the metal ions in the three phosphonium MILs that we have considered are 

responsible for the quenching of the Cy5 fluorescence.  This observation is further confirmed by 

performing quenching studies of Cy5 and C153 dye with chloride salts of manganese and iron 

(Table S6.1 and Figures S6.5-S6.9).  The quenching of C153 and Cy5 by MnCl2 is purely 

dynamic; and the value of the quenching constants are 𝐾𝐷 = 2.1 ± 0.1 M-1 and 𝐾𝐷 = 0.1 ± 0.3 
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M-1 for C153 and Cy5, respectively.  Therefore, the extent of quenching by MnCl2 is negligibly 

small.   On the other hand, FeCl3 has a significant effect on the fluorescence of C153 (𝐾𝐷 = 15 ±

1 M-1, 𝐾𝑆 = 1700 ± 60 M-1, and 𝑉 = 730 ± 9 M-1).  It also quenches the fluorescence of Cy5 

considerably (𝐾𝐷 = 3.0 ± 0.2 M-1 and 𝐾𝑆 = 11.9 ± 0.6 M-1).  

6.4.4  Fluorescence quenching of Cy5 by metal-hfacac MILs 

Steady-state spectra and the Stern-Volmer plots for the quenching of Cy5 in methanol are 

presented in Figures S2-S3 and in Figure 5 for the [P66614
+][Co(hfacac)3

−], [P66614
+][Ni(hfacac)3

−], 

and [P66614
+][Mn(hfacac)3

−] MILs, respectively.  The quenching parameters obtained from 

equations (6.2)-(6.8) are summarized in Table 6.3.  One of the most striking differences between 

the hfacac MILs with respect to the metal halide MILs is that hfacac solvents are all well described 

by dynamic quenching, equation (6.2), whereas it is necessary to describe the halide solvents by 

static quenching mechanisms as well.  This suggests that hfacac is effective in preventing the 

formation of ground-state complexes.  For example, the quenching by [P66614
+][Co(hfacac)3

−] is 

quite different from that of [P66614
+]2[CoCl4

2−], the chloride analog.  Figure S6.2a indicates that 

its absorption spectrum is not as significantly altered by the quencher, as in the case of the chloride 

analog.  Unlike its chloride analog, the plot of 𝐹0/𝐹  against the concentration of 

[P66614
+][Co(hfacac)3

−] is linear within experimental error (Figure S6.2c), yielding the Stern-

Volmer quenching constant, 𝐾𝐷 = 69 ± 2 M-1.  For [P66614
+][Ni(hfacac)3

−], a plot of 𝐹0/𝐹 against 

its concentration is best fit, within experimental error, to a line (Figure S6.3c), yielding 𝐾𝐷 =

73 ± 4 M-1.  It can thus be concluded that [P66614
+][Ni(hfacac)3

−] quenches Cy5 to a similar degree 

as does [P66614
+][Co(hfacac)3

−].  The absorption spectra of Cy5 in the presence of 

[P66614
+][Mn(hfacac)3

−] change the least for the three hfacac-based MILs.  The plot of 𝐹0/𝐹  

against its concentration (Figure 6.5c) yields 𝐾𝐷 = 1.9 ± 0.3 M-1, indicating a very small degree 
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of quenching, comparable to that of [P66614
+]2[MnCl4

2−].  These results suggest that among the 

paramagnetic ions we investigated, Mn(II) is the optimum choice for fluorescence-based analytical 

techniques.  

Finally, in order to illustrate the suitability of Mn(II)-MILs for fluorescence-based assays 

of DNA, we compared the labeled oligonucleotide, Cy5-DNA, in neat: [P66614
+][FeCl4

−] and 

[P66614
+]2[MnCl4

2−].  The absorption and the fluorescence emission of Cy5 are greatly modified 

and the fluorescence intensity was quenched significantly in [P66614
+][FeCl4

−] as compared to 

[P66614
+]2[MnCl4

2−] (Figure 6.7).  The fluorescence lifetime of Cy5-DNA in neat [P66614
+][FeCl4

−] 

is < 100 ps; while in neat [P66614
+]2[MnCl4

2−], it is 1.56 ns and single exponential, demonstrating 

the effective homogeneity of the nonquenching environment to which the Cy5 is exposed.  These 

data confirm the utility of Mn(II)-based MILs.  

6.5  Conclusions  

 

We have investigated MILs comprised of metal-based anions in the form of chloride or 

hfacac complexes with phosphonium ([P66614
+]) cation counterparts using absorption and emission 

spectroscopy in order to identify MILs that render them compatible with downstream fluorescence 

assays for DNA biopolymers.  This entailed the evaluation of the quenching efficiency, with 

respect to the commonly used fluorescent tag, Cy5, of the paramagnetic ions, Mn(II), Fe(III), 

Co(II), and Ni(II) both isolated and associated with various components of the MILs, and the MILs 

themselves.   

Although MILs containing metal ions such as Fe(III) may be advantageous for magnet-

based extraction applications due to their higher magnetic moments, Fe(III)-MILs strongly quench 

(probably by intersystem crossing or possibly by excited-state electron transfer)  fluorescence that 

could potentially be used for emission-based techniques.  Similarly, Co(II)-MILs are strong 
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quenchers that preclude the use of fluorescence.  Mn(II)-MILs, however, balance a high magnetic 

moment with low fluorescence quenching.   

A summary and assessment of the nature and the magnitude of the quenching processes 

follows.  Co(II) is the only component of the MILs that can significantly quench by nonradiative 

Förster resonant energy transfer (Table 6.1).  In contrast, Fe(III) is a quencher as can be determined 

from Table 6.2, but either functions via intersystem crossing or excited-state electron transfer as 

the overlap between the Cy5 emission spectrum with its absorption spectrum is small.  Hfacac 

keeps the Co(II) farther away from the Cy5 than does the halide and thus changes the quenching 

interaction.  Specifically, 𝑅0  is smaller with hfacac than with the halide anion (Table 6.1).  

Furthermore, there seems to be little or no static quenching with hfacac.  This is suggestive of the 

role hfacac may play with the other metals as well.  The metal-hfacac anion is preferable to the 

metal-halide because it provides “cleaner” spectra by reduced ground-state complexation (and 

quenching) with the fluorescent tag, Cy5, as indicated by the relatively smaller or absent changes 

of the Cy5 absorption spectrum with hfacac concentration (Table 6.3).  The Stern-Volmer 

quenching constants for Mn(II)-based MILs are one order of magnitude smaller than those of 

Co(II) or Ni(II)-based MILs.  Mn(II) does not obfuscate the spectra of the fluorescent label, as do 

Fe(III) and Co(II).  Finally, and most importantly, our results demonstrate that Mn(II)-based MIL 

extraction solvents such as [P66614
+]2[MnCl4

2−] and [P66614
+][Mn(hfacac)3

−] are ideal for direct 

spectroscopic analysis of extracted DNA and possibly other biological materials, such as RNA or 

proteins.    
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6.8  Tables and figures  

 

Table 6.1 

 

Förster Critical Distances 

 

Quencher  𝑹𝟎 (Å) 

Mn(II) a 16.1 

Fe(III) a 26.9 

Co(II) a 58.1 

Ni(II) a 33.6 

hfacac 15.9 

[P66614
+][Cl−] 10.2 

[P66614
+][hfacac−] 17.0 

[P66614
+][Mn(hfacac)3

−] 26.7 

[P66614
+][Co(hfacac)3

−] 22.2 

[P66614
+][Ni(hfacac)3

−] 33.8 

[P66614
+]2[CoCl4

2−] in DMSO b 57.3 

[P66614
+]2[MnCl4

2−] 14.2 

[P66614
+][FeCl4

−] 20.7 

 

a A sufficient amount of Cl− was used in the preparation of the solutions to ensure a tetrahedral 

arrangement of the halide about the metal cation. 

b Methanol was the solvent for the measurement of Förster critical distances in all cases except for  

[P66614
+]2[CoCl4

2−], where DMSO was required.  In methanol, the solution took on an 

uncharacteristic pink color; and 𝑅0 =  33.5 Å.  Note that 𝑅0 for [P66614
+]2[CoCl4

2−] in DMSO  is 

essentially equal to that for Co(II) in methanol. 
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Table 6.2 

Parameters for the Quenching of Fluorescence of Cy5 by Metal Halide-Based MILs 

Anion Plot typea 𝐾𝐷(M-1)  𝐾𝑆(M-1) 𝑉(M-1) 

[CoCl4
2−]b 𝜏0/𝜏 vs. [𝑄] 82 ± 3 -- -- 

 (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄]c -- 1200 ± 100 520 ± 30 

[MnCl4
2−] 𝐹0/𝐹 vs. [𝑄] -- 1 ± 2 -- 

 
𝜏0/𝜏 vs. [𝑄] 0.2 ± 0.1 -- -- 

 (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄]d -- 1 ± 1 -- 

[FeCl4
−] 𝐹0/𝐹 vs. [𝑄] 40 ± 2 -- -- 

 
𝜏0/𝜏 vs. [𝑄] 6.0 ± 0.2 -- -- 

 (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄]d -- 30 ± 2 -- 

 

a  The relationships are given in equations (6.2) through (6.8).  [𝑄] is the quencher concentration. 

b For [P66614
+]2[CoCl4

2−], the 𝐹0/𝐹  vs. [𝑄] plot shows a large deviation from linearity with an 

upward curvature.   

c The plot of (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄] is nonlinear and fit to equation (6.8).   

d The plot of (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄] is linear and fit to equation (6.5).   
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Table 6.3 

Parameters for the Quenching of Fluorescence of Cy5 by [P66614
+]-based MILs with hfacac 

ligands  

Anion 𝐾𝐷 or 𝐾𝑆 (M
-1) a 

[Co(hfacac)3
−]  69 ± 2 

 [Ni(hfacac)3
−] 73 ± 4 

 [Mn(hfacac)3
−] 1.9 ± 0.3 

 [Cl−]b −1 ± 1 

 
a The data are fit well to equations (6.2) and (6.3) are formally identical and which can only be 

distinguished by measuring fluorescence lifetimes, which was not possible for this series of 

samples.  Because, however, there was no change in the absorption spectrum as a function of 

quencher concentration (Figure 6.5a), it is appropriate to conclude that the [Mn(hfacac)3
−] solvent 

quenches by a dynamic process.  There is evidence of some ground-state complexation for the 

[Co(hfacac)3
−] and a considerable amount for [Ni(hfacac)3

−] solvents (Figures S6.2 and S6.3, 

respectively), but not to the extent as observed for the halides.  In all instances, then, it appears 

that the hfacac ligand suppresses or substantially mitigates ground-state complexation. 

b [P66614
+][Cl−] is a “conventional” ionic liquid with no magnetic moment and serves as a control.   
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Figure 6.1.  Structures of the IL, MILs, and fluorophores.  (1) Phosphonium chloride, [P66614
+][Cl−] 

(2) phosphonium cobalt(II) chloride, [P66614
+]2[CoCl4

2−]; phosphonium manganese(II) chloride, 

[P66614
+]2[MnCl4

2−]; and  phosphonium iron(III) chloride, [P66614
+][FeCl4

2−] (3) phosphonium 

cobalt(II) hexafluoroacetylacetonate, [P66614
+][Co(hfacac)3

−]; phosphonium nickel(II) 

hexafluoroacetylacetonate, [P66614
+][Ni(hfacac)3

−]; and phosphonium manganese(II) 

hexafluoroacetylacetonate, [P66614
+][Mn(hfacac)3

−] (4) Coumarin 153, C153 (5) Cyanine5 

carboxylic acid, Cy5. Experiments using C153 are discussed in the SI. 
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Figure 6.2.  Fluorescence and absorption data required for the computation of the Förster overlap 

integral indicated in equation (6.1).  The fluorescence spectrum of Cy5 (red) is plotted to have unit 

area on the wavenumber scale.  The absorption of Co(II) is given in blue.  A sufficient amount of 

Cl− was used in the preparation of the solutions to ensure a tetrahedral arrangement of the halide 

about the metal cation. 
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Figure 6.3.  Fluorescence quenching of Cy5 in DMSO as a function of [P66614
+]2[CoCl4

2−] 

concentration. (a) Absorption spectra. (b) Fluorescence emission spectra, 𝜆𝑒𝑥 = 600 nm.  

Intensities are corrected for the absorption at the wavelength of excitation. (c) Time-resolved 

fluorescence decay.  The IRF is the instrument response function for the apparatus. (d) Stern-

Volmer plot for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher 

concentration. (e) Stern-Volmer plot of (𝜏0/𝜏) as a function of the quencher concentration. (f) Plot 

of (𝐹0/𝐹)/(𝜏0/𝜏) as a function of the quencher concentration. 
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Figure 6.4.  Fluorescence quenching of Cy5 in DMSO as a function of [P66614
+]2[MnCl4

2−] 

concentration. (a) Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. 

Intensities are corrected for the absorption at the wavelength of excitation (c) Time-resolved 

fluorescence decay (d) Stern-Volmer plot for the integrated fluorescence intensity ratio (𝐹0/𝐹) as 

a function of the quencher concentration. (e) Stern-Volmer plot of (𝜏0/𝜏) as a function of the 

quencher concentration. (f) Plot of (𝐹0/𝐹)/(𝜏0/𝜏) as a function of the quencher concentration. 
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Figure 6.5.  Fluorescence quenching of Cy5 in methanol as a function of [P66614
+][Mn(hfacac)3

−] 

concentration. (a) Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. 

Intensities are corrected for the absorption at the wavelength of excitation (c) Stern-Volmer plot 

for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher concentration.  
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Figure 6.6.  Fluorescence quenching of Cy5 in methanol as a function of [P66614
+][Cl−] 

concentration. (a) Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. 

Intensities are corrected for the absorption at the wavelength of excitation. (c) Stern-Volmer plot 

for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the IL concentration.  
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Figure 6.7.  Absorption and emission of Cy5-DNA (~1 μM) in neat [P66614
+][FeCl4

−] (gray) and 

in neat [P66614
+]2[MnCl4

2−] (red).  (a) Absorption spectra.  (b) Fluorescence emission spectra, 𝜆𝑒𝑥 =
600 nm.  Note that the spectra are normalized to the same average peak intensity but that the 

intensity in the [FeCl4
−] solvent is roughly 200 times less than in the [MnCl4

2−] counterpart.  (c) 

Time-resolved fluorescence decay traces confirming the results of panel (b).  IRF is the instrument 

response function of the apparatus.  The lifetimes of Cy5-DNA are < 100 ps in neat 

[P66614
+][FeCl4

−] and 1.56 ns in neat [P66614
+]2[MnCl4

2−]. 
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6.9  Supplementary Information 

 

Table S6.1 

Parameters for Fluorescence Quenching of C153 and Cy5 by Metal Chloride Salts  

Dye Salt Plot type a 𝐾𝐷(M-1) 𝐾𝑆(M-1) 𝑉(M-1) 

C153 FeCl3
 b 𝜏0/𝜏 vs. [𝑄] 15 ± 1 -- -- 

  (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄]c -- 1700 ± 60 730 ± 9 

 MnCl2 𝐹0/𝐹 vs. [𝑄] 2.2 ± 0.1 -- -- 

 
 

𝜏0/𝜏 vs. [𝑄] 2.1 ± 0.1 -- -- 

Cy5 FeCl3 𝐹0/𝐹 vs. [𝑄] 18.1 ± 0.4 -- -- 

 
 

𝜏0/𝜏 vs. [𝑄] 3.0 ± 0.2 -- -- 

  (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄]d -- 11.9 ± 0.6 -- 

 MnCl2 𝐹0/𝐹 vs. [𝑄] 0.1 ± 0.2 -- -- 

 
 

𝜏0/𝜏 vs. [𝑄] 0.1 ± 0.3 -- -- 

 

a The relationships are given in equations (6.2)-(6.8). 

b For C153 and FeCl3, the 𝐹0/𝐹 vs. [𝑄] plot shows a large deviation from linearity with an upward 

curvature.   

c The plot of (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄] is nonlinear and fitted with equation (6.8).   

d The plot of (𝐹0/𝐹)/(𝜏0/𝜏) vs. [𝑄] is linear and fitted with equation (6.5).   
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Figure S6.1.  Fluorescence quenching of Cy5 in DMSO as a function of [P66614
+][FeCl4

−] 

concentration. (a) Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. 

Intensities are corrected for the absorption at the wavelength of excitation. (c) Time-resolved 

fluorescence decay. (d) Stern-Volmer plot for the integrated fluorescence intensity ratio (𝐹0/𝐹) as 

a function of the quencher concentration. (e) Stern-Volmer plot of  (𝜏0/𝜏) as a function of the 

quencher concentration. (f) Plot of (𝐹0/𝐹)/(𝜏0/𝜏) as a function of the quencher concentration. 
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Figure S6.2.  Fluorescence quenching of Cy5 in methanol as a function of [P66614
+][Co(hfacac)3

−] 

concentration. (a) Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. 

Intensities are corrected for the absorption at the wavelength of excitation. (c) Stern-Volmer plot 

for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher concentration.  
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Figure S6.3.  Fluorescence quenching of Cy5 in methanol as a function of [P66614
+][Ni(hfacac)3

−] 

concentration. (a) Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. 

Intensities are corrected for the absorption at the wavelength of excitation. (c) Stern-Volmer plot 

for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher concentration. 
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Figure S6.4.  Fluorescence quenching of Cy5 (~1 μM) in neat [P66614
+][FeCl4

−]. (a) Absorption 

spectra of Cy5 in neat [P66614
+][FeCl4

−] (red) and in methanol (gray). (b) Fluorescence emission 

spectra at 𝜆𝑒𝑥 = 600 nm. Intensities are corrected for the absorption at the wavelength of 

excitation (c) Time-resolved fluorescence decay.  The mean lifetime of Cy5 is 150 ps in neat 

[P66614
+][FeCl4

−] whereas it is 810 ps in MeOH.  
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Figure S6.5.  Fluorescence quenching of Cy5 (~1 μM) in neat [P66614
+]2[MnCl4

2−].  (a) Absorption 

spectra of Cy5 in neat [P66614
+]2[MnCl4

2−] (red) and in methanol (gray). (b) Fluorescence emission 

spectra at 𝜆𝑒𝑥 = 600 nm. Intensities are corrected for the absorption at the wavelength of 

excitation (c) Time-resolved fluorescence decay.  The mean lifetime of Cy5 is 2.04 ns in neat 

[P66614
+]2[MnCl4

2−] whereas it is 810 ps in MeOH.  
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Figure S6.6.  Fluorescence quenching of C153 in DMSO as a function of FeCl3 concentration. (a) 

Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. Intensities are corrected 

for the absorption at the wavelength of excitation. (c) Time-resolved fluorescence decay. (d) Stern-

Volmer plot for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher 

concentration.  (e) Stern-Volmer plot of (𝜏0/𝜏) as a function of the quencher concentration. (f) Plot 

of (𝐹0/𝐹)/(𝜏0/𝜏) as a function of the quencher concentration. 
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Figure S6.7.  Fluorescence quenching of C153 in DMSO as a function of MnCl2 concentration. 

(a) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm.  Intensities are corrected for the absorption at 

the wavelength of excitation. (b) Time-resolved fluorescence decay. (c) Stern-Volmer plot for the 

integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher concentration. (d) 

Stern-Volmer plot of (𝜏0/𝜏) as a function of the quencher concentration. (e) Plot of (𝐹0/𝐹)/(𝜏0/𝜏) 
as a function of the quencher concentration. 
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Figure S6.8.  Fluorescence quenching of Cy5 in DMSO as a function of FeCl3 concentration. (a) 

Absorption spectra. (b) Fluorescence emission spectra , 𝜆𝑒𝑥 = 600 nm. Intensities are corrected 

for the absorption at the wavelength of excitation. (c) Time-resolved fluorescence decay. (d) Stern-

Volmer plot for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher 

concentration. (e) Stern-Volmer plot of (𝜏0/𝜏) as a function of the quencher concentration. (f) Plot 

of (𝐹0/𝐹)/(𝜏0/𝜏) as a function of the quencher concentration. 
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Figure S6.9.  Fluorescence quenching of Cy5 in DMSO as a function of MnCl2 concentration. (a) 

Absorption spectra. (b) Fluorescence emission spectra at 𝜆𝑒𝑥 = 600 nm. Intensities are corrected 

for the absorption at the wavelength of excitation. (c) Time-resolved fluorescence decay. (d) Stern-

Volmer plot for the integrated fluorescence intensity ratio (𝐹0/𝐹) as a function of the quencher 

concentration. (e) Stern-Volmer plot of (𝜏0/𝜏) as a function of the quencher concentration. (f) Plot 

of (𝐹0/𝐹)/(𝜏0/𝜏) as a function of the quencher concentration. 

 



www.manaraa.com

248 

 

CHAPTER 7.  CHARACTERIZING ELECTRIC FIELD EXPOSED P3HT THIN FILMS 

USING POLARIZED-LIGHT SPECTROSCOPIES 

 

A paper published in the Macromolecular Chemistry and Physics 

Ujjal Bhattacharjee,§,1,2 Moneim Elshobaki,§,4 Kalyan Santra,1,2
 Jonathan M. Bobbitt1,2, Sumit 

Chaudhary,3 Emily A. Smith, and Jacob W. Petrich* 

7.1  Abstract  

 P3HT (poly (3-hexylthiophene)) has been widely used as a donor in the active layer in 

organic photovoltaic devices.  Although moderately high-power conversion efficiencies have been 

achieved with P3HT-based devices, structural details, such as the orientation of polymer units and 

the extent of H- and J-aggregation are not yet fully understood; and different measures have been 

taken to control the ordering in the material.  One such measure, which we have exploited, is to 

apply an electric field from a Van de Graaff generator.  We used fluorescence (to measure 

anisotropy instead of polarization, which is more commonly measured) and Raman spectroscopy 
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 to characterize the order of P3HT molecules in thin films resulting from the field.  We determine 

preferential orientations of the units in a thin film, consistent with observed hole mobility in thin-

film-transistors, and observe that the apparent H-coupling strength changes when the films are 

exposed to oriented electrical fields during drying.   

7.2  Introduction 

Π-conjugated polymers (-CP) have been of considerable interest and applicability since 

their discovery.1,2  The combination of the properties of metals and semiconductors, mechanical 

properties such as tensile strength, ductility, etc., and the ease of processing gives these materials 

a very important role in the development of organic photovoltaic (OPV) devices.  Among the 

polymers used for solar cells, P3HT (poly (3-hexylthiophene)), is the most extensively studied.  

The efficiency of P3HT-based solar cells typically lies in the range of 4-6 %;3-7 and in similar 

polymers, such as poly[[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2- b:4,5-b′]dithiophene-2,6-diyl] [3-

fluoro-2- [(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7), an efficiency as high as 

~10% has been achieved.8   

The two main challenges that P3HT-based solar cells face are:  (1) poor overlap between 

the absorption spectrum of P3HT and the solar spectrum; and (2) structural defects.  The first can 

be somewhat alleviated by making the film thicker, ensuring sufficient absorption of solar light.  

On the other hand, owing to the small exciton-diffusion length and the large charge-transfer radius 

(4.8 to 9 nm), excitons reach interfaces by swift delocalization in P3HT domains instead of by 

diffusion.9  Disorder in the polymer matrix, however, limits the carrier mobility.10  Studies directed 

towards reducing structural disorder and, thus, increasing carrier mobility are fundamental to 

enhancing the efficiency of these materials.  Thermal annealing,11-13 solvent annealing,14,15 slow 

growth,16 epitaxy,17 and the use of shear forces,18,19 high boiling solvents20,21 and solvent 
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additives22,23 have been explored as a means to attenuate the problem.  Electric fields have 

previously been used to align24 or to generate a particular morphology of nanomaterials.25  There 

are also a few reports in the literature concerning the orienting of P3HT “nanofibers” in 

microchannels by the field between two electrodes.26,27 Attraction of the P3HT solution towards 

the cathode is believed to be a result of the generation of positive charge in the nanofibers owing 

to solvent-P3HT interaction preceding their alignment.26,28 

There is not, however, any report concerning the orientation of P3HT polymer units using 

a unipolar electric field while the polymer solution is spin coated on an ITO substrate.  To date, 

studies have only been performed on P3HT nanofibers (i.e., crystalline phases). As there is a 

possibility of forming amorphous phases in addition to crystalline phases while the film is drying, 

there is the possibility of orienting the polymer units in the both phases and producing a 

concomitant change in charge mobility.29  In other words, it is possible that the orientation of the 

P3HT polymers in the amorphous phases can also play a role irrespective of crystallinity itself, 

which has previously been studied in a microchannel.26,27 While crystallinity can, of course, 

provide strong orientational effects, it is important to note that the carrier diffusion length in P3HT 

is very small (less than 2 nm9,30,31) and that amorphous character may be helpful in connecting 

nanocrystalline domains. Thus, understanding the molecular ordering of P3HT is critical when 

using these thin films as active layers in various electronic devices.   

Here we investigate the use of steady-state and time-resolved fluorescence anisotropy 

along with polarized Raman spectroscopy to characterize the orientation of the polymer units.  

(Although several reports have appeared in the literature using polarization to investigate ordering 

of P3HT nanofibers,26,27,32 our study is the first to measure the anisotropy, a quantitative measure 

of orientation, as rigorously defined below in equation (7.1).)  Consistent with our anisotropy 
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measurements, we observed an enhancement of in-plane charge mobility in the films exposed to 

an electric field.29   

Barnes and coworkers have studied P3HT nanofibers with polarized time- and 

wavelength-resolved fluorescence microscopy.33  They showed that the dominant inter-chain 

exciton coupling (H-aggregation) in low-molecular-weight nanofibers changes to predominantly 

intra-chain coupling (J-aggregation) for high molecular-weight nanofibers.33  In thin films, P3HT 

remains a weakly coupled H-aggregate,34,35 although varying amounts of inter- and intra-chain 

coupling can be observed depending on the molecular weight, processing conditions, and other 

parameters.36  We show that an applied electric field can change the effective coupling strength in 

the polymer and that these orientational changes can be effectively probed by spectroscopic 

techniques using polarized light.   

 

7.3  Materials and Methods 

7.3.1  Solution preparation 

Neat P3HT (92% regio-regular) with molecular weight 70 kDa (1-Materials, Inc., Dorval, 

Québec, Canada) was dissolved in 1, 2-dichlorobenzene (DCB) with a dilution of 20 mg/ml.  The 

solutions were stirred at 850 rpm on a hot plate at 50°C and then filtered.  

7.3.2  Substrate preparation under an E-field 

Indium tin oxide (ITO)-coated glass slides (25-mm ×  25-mm) (Delta Technologies, 

Loveland, CO) were cleaned following the method described by Chaudhary et al.37  The solution-

processed -CP based films were subjected to an electric field immediately after they were formed 

by spin coating at 500 rpm for 40 s while they were still wet.  This was accomplished by placing 

the coated substrates around a Van de Graaff dome in three different orientations:  0°, 45°, and 90° 
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relative to the normal of the surface of the dome (Figure 1).  The field strength was approximately 

5.88 kV/m at the surface of the generator's dome, and the films were kept at a distance of 

approximately 1 cm from the surface of the dome. Furthermore, the degree of crystallinity in our 

P3HT films has been calculated following the procedure described by Hashimoto and co-

workers38:  a value of 39% is obtained (Figure S7.1, available online doi:10.1002/macp. 

201600113). 

7.3.3  Steady-state fluorescence measurements: Excitation anisotropy  

These were performed with a Spex Fluoromax-4 with a 4- or 5-nm excitation and emission 

bandpass and corrected for lamp spectral intensity and detector response.  The steady-state spectra 

were collected using a front-faced orientation.  Glan-Thompson polarizers were appropriately 

placed before and after the sample.  A 550-nm long-pass filter was used to eliminate scattered 

light.  Excitation spectra were collected with a 720 ±  5-nm interference filter.  To obtain the 

excitation anisotropy spectra, the films were excited with vertically polarized light, and emission 

polarized both parallel and perpendicular to the excitation polarization was collected.  The 

anisotropy (r) was computed as39,40: 

 𝑟 =
𝐼|| − 𝐼⏊

𝐼|| + 2𝐼⏊
  (7.1) 

Note that the anisotropy, as defined in equation (7.1), differs from a frequently used quantity, the 

polarization, by the presence of the 2 in the denominator.  The factor of two normalizes the 

difference in 𝐼|| and  𝐼⏊ to the excited-state lifetime of the fluorophores, since the denominator in 

equation (7.1) is proportional to the excited-state lifetime.39,40  More importantly, the anisotropy 

is rigorously defined to have values such that −0.2 ≤   𝑟  ≤  0.4.39  These limits on the value of 

𝑟  provide an invaluable means for gauging the precision of the experimental measurement:  e.g., 

the quality of the polarizers employed and whether they are properly aligned parallel or 
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perpendicular to each other; the optical quality of the sample (scattering can provide spurious 

results); and the wavelength dependence of the grating and optics of the spectrometer 

Because the grating and optics of a monochromator may be sensitive to polarization, a 

correction factor must also be determined.  Such a factor, g, is obtained by taking the ratio of two 

spectra of a dye in solution.  (Here we used ATTO 655 in water, as its absorption and emission 

spectra overlapped those of P3HT).  Insofar as the dye can be considered to be freely rotating on 

the time scale of the measurement, 𝐼|| and  𝐼⏊  should be identical, regardless of the excitation 

polarization.  Any differences in 𝐼||  and  𝐼⏊ must thus be attributed to the monochromator and 

detection optics.  As discussed in our previous work and that of other groups,41-44 the steady-state 

anisotropy, corrected for instrumental polarization dependence, is thus given by:   

 𝑟 =
𝐼𝑉,𝑉 − 𝑔 𝐼𝑉,𝐻
𝐼𝑉,𝑉 + 2 𝑔 𝐼𝑉,𝐻

    (2) 

where the notation 𝐼𝑉,𝑉 indicates fluorescence obtained using excitation light polarized vertically 

to the plane of the table and collected vertically to the plane of the table.  𝐼𝑉,𝐻, similarly, indicates 

vertical excitation and horizontal collection.  The correction factor is given as:  𝑔 =
𝐼𝐻,𝑉

𝐼𝐻,𝐻
= 

𝐼𝑉,𝑉

𝐼𝑉,𝐻
.  

Measurements were repeated at least three times.  The optical system was optimized by comparing 

results with those obtained from the excitation anisotropy of  hypericin, which emits in the same 

region and which we had reported previously.41   

7.3.4  Time-resolved fluorescence measurements 

These were obtained with the time-correlated, single-photon counting (TCSPC) technique. 

The apparatus for time-correlated, single-photon counting is described elsewhere.45  Our system 

provides an instrument response function whose full-width at half-maximum (FWHM) is ∼40-50 

ps.  Experiments were performed in a front-faced orientation.  Crossed polarizers provided an 
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extinction of 105.  An interference filter at 720 ± 5 nm was used to collect photons, to be consistent 

with the steady-state measurements.  Fluorescence lifetimes were measured with a polarizer 

oriented at “the magic angle,” 54.7˚ to the vertical in order to prevent depolarizing events from 

skewing the measured fluorescence lifetime.46  For each sample, fluorescence lifetime and 

anisotropy decays were measured at three random locations on the sample.  Fluorescence decays 

were best fit to two decaying exponentials, after deconvolution with the instrument response 

function.  The time-dependent anisotropy, 𝑟(𝑡), was constructed using the equation (7.1) and was 

well described by a single-exponential decay.  The parallel and the perpendicular traces were 

collected for equal amounts of time, during which the incident excitation power remained constant.  

This resulted in the overlap of the “tails” of the parallel and perpendicular traces at sufficiently 

long times, thus obviating the need for “tail matching.”40,44    

7.3.5  Raman measurements 

All Raman spectra were collected using a lab-built microscope system (Leica, Wetzlar, 

Germany) with a 532-nm laser excitation (Sapphire SF 532-nm 150 mW, Coherent, Santa Clara, 

CA) after the fluorescence measurements were completed.  The laser beam was expanded with a 

10× beam expander in order to backfill a 10× Leica microscope objective with a 0.25 numerical 

aperture.  The laser spot size after the objective was 1.6 ±  0.2 µm.  The objective was used for 

focusing and collecting the Raman scattering from the epi-direction and then directed to a side port 

on the microscope where it was focused onto an f/1.8i HoloSpec spectrograph (Kaiser Optical 

Systems, Ann Arbor, MI).  A Newton 940 (2048 × 512 pixels) charged-coupled device (CCD) was 

used to detect the Raman signal (Andor Technology, Belfast, UK). 

Raman spectra were collected at 5 different locations from the center of each P3HT film 

under ambient laboratory conditions.  An XY translation-stage (ProScan, Prior Scientific, 
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Rockland, MA) controlled by a lab-developed LabVIEW program (2010 version, National 

Instruments, Austin, TX) was used to move 1 mm to each new location.  The spectra were collected 

for 10 s with 2 accumulations and illuminated with 1.09×104 W/cm2, which is a low enough power 

density to avoid film degradation.47  Two accumulations were used in order to remove cosmic rays.   

Polarized Raman spectra were also collected on the P3HT films from the center of the film.  

The excitation polarization was controlled by a half-wave plate, and was set to s-polarization.  A 

linear polarizer was placed at the side port of the microscope to collect either s- or p-polarized 

Raman scattering.  A second linear polarizer set 45° to the collection polarizer was placed before 

the spectrometer to correct the spectrometer response function.48  The ratio of the scattered light 

intensity with the detection polarizer set to p (Ip) to the intensity with the detection polarizer set to 

s (Is) was calculated.  Benzene was used to test the instrument setup  (Ip/Is 0.035 ± 0.009 at 991 

cm-1, 0.77 ± 0.02 at 1171 cm-1 and 0.783 ± 0.009 at 1588 cm-1), and similar ratios were obtained 

to those found in literature.48,49  The polarized spectra were collected for 30 s with 2 accumulations 

at a power density of 1.32×104 W/cm2. 

Igor Pro 6.36 (Wavemetrics, Lake Oswego, OR) was used to correct for background and 

to analyze the Raman spectra.  The spectra were fit with a linear baseline and to a Gaussian function 

from 1250 to 1550 cm-1 with Igor Pro’s batch fitting macro.  The full-width at half-maximum 

(FWHM) and peak amplitudes were extracted from the fits. 

7.4  Results and Discussion 

7.4.1  Steady-state fluorescence measurements 

Spano, Barnes, and coworkers have shown that two vibronic transitions in the steady-state 

fluorescence spectra of P3HT are exquisitely sensitive to the state of aggregation of the polymer 

chains:  the 0-0 transition at ~650 nm and the 0-1 transition at ~720 nm.50  In particular, the ratio 
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between the intensities of these bands (Sr =  I0-0 /I0-1) is indicative of the resultant H- coupling 

strength in the polymer chain.51  In H-aggregation, the columbic interaction arising from the side-

by-side stacking of the chromophores between the chains of the crystalline films is suggested to 

suppress the 0-0 transition, yielding Sr < 1.51  In contrast, in J-aggregation, the head-to-tail 

conformation of chromophores is suggested to enhance a one-dimensional intrachain interaction, 

increasing the intensity of the 0-0 band, yielding Sr > 1.51,52  In addition, emission spectra exhibit 

red shifts for H-aggregation; blue shifts, for reduction of effective H-aggregation strength.    

Polarized emission spectra of neat P3HT films are presented in Figure 7.2.  The results are 

summarized in Table 7.1.  For emission collected parallel to the excitation polarization (Figure 

7.2a), the 0-0 peak of the normalized steady-state spectra decreased with increasing angle of the 

applied E-field, and was always less than 1.  Such low values of Sr, coupled with the spectral red-

shift with increasing E-field angle, suggest H-aggregation.  In contrast, for emission collected 

perpendicular to the excitation polarization, Sr was consistently higher than for the parallel case.  

This suggests an decrease of apparent H-coupling strength, which is consistent with the attendant 

spectral blue shift with E-field angle (Figure 7.2b).53  Thus, the polarized emission spectra are 

sensitive to the extent of H- and J- aggregation of the film, induced by the applied electric field.  

The values of excitonic coupling (J0) in the different films are also given in Table 7.1.53,54 

Several optical methods have been used for studying the orientation of units in polymers, 

for example:  polarized UV-Vis absorption,17,26 polarized electroluminescence,32 and polarized 

emission.55  We note, however, that while these orientational measurements often are discussed in 

terms of the “anisotropy” of the sample, the anisotropy is not measured in the sense of equation 

(7.1).  Because simple polarization measurements are not subject to theoretical upper and lower 

bounds, this renders comparisons between different experiments difficult.  A good example of this 
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difficulty is an attempt to compare our results with those of Lobov et al.26  Although there are 

differences in the methods of sample preparation (we subject P3HT films to an electric field while 

they are drying; they place a P3HT nanofiber solution between two electrodes), nevertheless, we 

only use an electric field of 5.88 kV/m while they use a field of 600 kV/m.  One would expect the 

higher field strength to yield a greater degree of orientation, but they report very small orientational 

effects.  It is difficult to determine the origin of this discrepancy because of the arbitrariness which 

simple polarization measurements are subjected to. 

Also, while polarized absorption provides some information that is comparable to our 

fluorescence anisotropy measurements, absorption is much more subject to artifacts arising from 

scattering in solid samples.  Scattering can become even more problematic in very heterogeneous 

samples.  Polarized electroluminescence is limited to semiconductor materials, and it does not 

address the possibility of losing anisotropy in other processes, such as molecular rotation and 

coupling between chromophores.  Also, a nonuniform electric field, an anisotropic distribution of 

trap states, and molecular reorientation will directly alter the electroluminescence intensity.  

Finally, while emission anisotropy is a powerful tool (especially if time-resolved data are acquired 

and if care is taken to quantify rigorously the anisotropy) it is most useful when coupled with the 

excitation anisotropy.   

Figure 7.3 (right ordinate) presents the fluorescence excitation spectrum (with parallel 

orientation of excitation and emission polarizers) of a P3HT film in the absence of an applied 

electric field.  The maximum of the 0-0 transition is ~615 nm.  The fluorescence excitation 

anisotropy spectra, constructed as described above, of P3HT films prepared at angles of 0°, 45°, 

and 90° with respect to the E-field, are presented in Figure 7.3 (left ordinate).  In all cases, the 

anisotropy decreases from 0.35-0.40 (0.40 being the theoretical maximum39) at the reddest edge 
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of the excitation spectrum (~690 nm), to 0.10-0.17 at the bluest part of the excitation spectrum that 

we excited (400 nm).  Our ability to attain an anisotropy near the theoretical upper limit confirms 

the proper alignment of our apparatus and good extinction of the excitation and analyzer polarizers.  

Most importantly, however, there is a clear and reproducible decrease in the anisotropy of the 

entire spectrum in going from an angle of the applied electric field of 0˚ to 90˚.  The lowest values 

of the anisotropy occur when there is no applied electric field.  Thus, the 0˚-film exhibits the 

maximum anisotropy, that is, preferential orientation of the polymeric units in the plane parallel 

to the substrate.  This is consistent with measured hole mobility in P3HT-based transistors, which 

showed an enhancement:  12.1×10-3 cm2 V-1 s-1 for the 0˚-film, as opposed to 7.13×10-3 cm2 V-1 s-1 

for the film that was not exposed to electric field.29  

7.4.2  Time-resolved fluorescence measurements: Fluorescence lifetime and anisotropy 

decays 

Time-resolved polarized emission of P3HT films is presented in Figure 7.4.  The 

parameters for the decay of the fluorescence lifetime and anisotropy of the P3HT films are 

summarized in Table 7.2.  The average fluorescence lifetimes are 0.30, 0.25, 0.32, and 0.28 ns for 

the films made with E-field at 0°, 45°, 90°, and with no E-field, respectively.  Time-resolved 

anisotropies of the films yield r(0) values, that is, the anisotropies at t = 0, similar to those obtained 

from the steady-state measurements (Table 7.2), as expected.  This result provides another check 

on the accuracy of the steady-state anisotropy measurements presented in Figure 7.3.  The 

fluorescence depolarization times, i.e., the decay of the anisotropy, are on the order of a 

nanosecond.  This is not attributed to rotational motion of the polymer film but rather to electronic 

coupling between the chromophores in the polymer, for which there is precedent for organic 

molecules.44,56  
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7.4.3  Raman measurements 

Raman spectroscopy can be used to characterize polymer-based organic photovoltaic device 

morphology by measuring changes in the full-width at half-maximum (FWHM) and the resulting 

polarization of the scattered light.47,48,57-60 Extensive work on P3HT aggregation has been reported 

by Grey et al.61,62 They classify P3HT films with a ratio of the peak intensities for aggregated and 

unaggregated chains (I1450 cm-1/I1470 cm-1) greater than 1.5 as highly aggregated chains with 

correlated planarity and an average intrastack chain-to-chain spacing of approximately 3.8 Å.  

Table 7.3 presents measured parameters for the P3HT carbon-carbon double bond peak at 1450 

cm-1 for films prepared in the absence of an external electric field, or with an electric field oriented 

in the noted directions.  These parameters were also measured for a P3HT crystal.  Representative  

spectra are presented in Figure 7.5.  All films have statistically similar peak maxima and FWHM 

values.  The films have I1450 cm-1/I1470 cm-1 values for both s and p polarized light ranging from 1.73 

 0.01 to 1.923  0.007.  Based on the classification of Gray et al.,61,62 these are highly aggregated 

chains with  intra- and inter-chain order and long conjugation lengths.   

The ratio of the polarized Raman scattered light is statistically lower for the 0°, 45°, and 90° 

films (Table 7.3).  Based on the work of Kleinhenz et al. and the polarized Raman data, there is 

an increasing order of the axis of the polymer backbone toward the orientation of the polarization 

of the excitation light for the 0°, 45°, and 90° films. The film prepared in the absence of an electric 

field (E = 0) has a statistically similar ratio of the polarized Raman scattered light as the P3HT 

crystal.  Both fluorescence anisotropy and polarized Raman measurements show altered polymer 

orientation for the samples prepared in the electric field.  The polarized Raman measurements, 

however, show no distinction between the 0°, 45°, and 90° films, indicating the fluorescence 

anisotropy measurement is a more sensitive technique in these cases.     



www.manaraa.com

260 

 

7.5  Conclusions 

We have shown that the P3HT polymer units can be oriented when the films are subjected 

to a unipolar electric field of ~5.88 kV/m generated by Van de Graaff dome as they dry and that 

this orientation can be probed effectively by steady-state and time-resolved fluorescence 

anisotropy measurements. It is important to note that the degree of orientation is weak, which is 

likely a consequence of the relatively poor regio-regularity (92%) and the MW (which is well 

above the MW threshold for polymer self-folding).17,33  Though electric fields have been used 

previously to align nanofibers, they were performed under a very controlled experimental 

conditions and in a microchannel between two electrodes.  Ours, however, is an easy and efficient 

method to use in conjunction with thin films prepared directly from P3HT solution where 

amorphous domains are  present (degree of crystallinity is 39%), though the study by Srinivasarao 

and co-workers strongly suggest that this ordering is mediated by a liquid crystalline phase. 63 The 

highest degree of ordering, as quantified by the limiting anisotropy (r0 for the steady-state 

measurement; r(0), for the time-resolved measurement), is attained when the electric filed is 

parallel to the film, as depicted in Figure 7.1.  In agreement with the anisotropy measurements, 

hole mobility in P3HT-based transistors increases when the films are exposed to electric field.  The 

0˚-film shows a 1.7-fold enhancement over control film (E = 0).  The polarized emission spectra 

are also sensitive to the orientation of the electric field (Figure 7.2 and Table 7.1) as quantified 

by the ratio of the first two vibronic transitions, which are in turn related to the extent of H- or J-

aggregation.  Finally, polarized Raman experiments suggest differences between the samples in 

the presence and absence of electric field.  Taken as a whole, these results suggest that the 

polymeric units of P3HT can be ordered with an electric field, that this ordering can be probed and 

quantified by spectroscopies using polarized light, and that applying an electric field in excess of 
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5.88 kV/m to drying films of P3HT could be beneficial in improving the performance of organic 

solar cells—or in systems where in-plane mobility is important.   
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7.8  Tables and Figures 

 

Table 7.1 

Ratio of the Intensity of the Emission of the 0-0 to 0-1 Vibronic Bands of P3HT, 𝑆𝑟, as a 

Function of Electric Field Orientation for Emission Collected Parallel and Perpendicular to the 

Excitation Polarizationa 

 

𝑺𝒓, parallel  𝑺𝒓, perpendicular 𝑱𝟎 (cm-1)b Electric field angle c 

0.89 ± 0.02 0.71 ± 0.01 68 No field (𝐸 =  0) 

0.81 ± 0.01 0.98 ± 0.02 107 0˚ 

0.77 ± 0.01 0.88 ± 0.02 126 45˚ 

0.73 ± 0.01 0.85 ± 0.02 160 90˚ 

 

a Data summarized from the polarized fluorescence spectra presented in Figure 7.2. 

b The excitonic coupling, 𝐽0 is calculated using the equation, 𝐽0 = 𝐽𝑘=0 2⁄ , where the excitonic shift 

of the 𝑘 = 0 exciton (𝐽𝑘=0) is given by:  
𝐼0−0

𝐼0−1
=

(1−0.48
𝐽𝑘=0
𝜔0

)
2

(1+0.146
𝐽𝑘=0
𝜔0

)
2 .

54 𝜔0 is the energy difference (in 

cm-1) between the 0-0 and 0-1 transitions in the absorption spectrum, given by the I in the equation 

above.  𝜔0 = 1198, 1401, 1293, and 1289 cm-1 for 𝐸 =  0 (no applied field), and for 𝐸 = 0˚, 45˚, 

90˚ field angles, respectively. 

c Angles are defined for the applied electric field (𝐸 ≠  0) as described in Figure 7.1. 
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Table 7.2 

Fluorescence Anisotropy Parameters for Oriented P3HT Films  

(𝜆ex  =  425 nm and 𝜆em =  720 nm) 

 

E-field direction a 𝒓𝟎
 b 𝒓(𝟎) c 𝝉𝑫 (ns) c 𝝉𝑭 (ns) d 

0˚ 0.17 ± 0.01 0.18 ± 0.02 1.6 ± 0.4 0.30 ± 0.05 

45˚ 0.15 ± 0.01 0.16 ± 0.01 1.3 ± 0.4 0.25 ± 0.03 

90˚ 0.13 ± 0.01 0.12 ± 0.01 0.5 ± 0.3 0.32 ± 0.03 

Reference (i.e., 

𝐸 =  0) 

0.11 ± 0.02 0.09 ± 0.02 0.7 ± 0.3 0.28 ± 0.05 

 

a See Figure 7.1 for the definitions of the angles specifying the E-field orientations.   

b 𝑟0 is the steady-state anisotropy:  −0.2 ≤ 𝑟0 ≤ 0.4 

c Fluorescence anisotropy decays are constructed from equation (7.1) and fit to a single exponential 

of the form: 𝑟(𝑡) = 𝑟(0) exp(−𝑡/𝜏𝐷) .  𝑟(0) is the anisotropy at time zero (i.e., the limiting 

anisotropy):  –0.2 ≤ r(0) ≤ 0.4.39  At the same excitation wavelength, 𝑟0 should equal 𝑟(0).  𝜏𝐷    is 

the fluorescence depolarization time, i.e., the 1/𝑒 time at which the parallel and perpendicular 

curves coalesce.   Factors that contribute to depolarization are molecular motion (such as rotational 

diffusion) or nonradiative events such as interactions between electronic states of different 

polarization. 

d 𝜏𝐹, the average fluorescence lifetime, i.e., 〈𝜏𝐹〉 = 𝐴1𝜏1 + 𝐴2𝜏2, where the 𝐴𝑖  and the 𝜏𝑖 are the 

amplitudes and lifetimes of the two components in the double-exponential fit used to fit the 

fluorescence decay.  The 𝜏1 and 𝜏2 are ~ 0.20 ns and ~ 0.62 ns, respectively in the reference film, 

which is consistent with the reported values in the literature.64  The values of the two lifetime 

components are similar in the films exposed to electric field.   
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Table 7.3 

Average Peak Maximum, FWHM and Ratio of the p- to s-Polarized Scattered Light Intensity 

(Ip/Is) for the 1450 cm-1 Band of P3HT 

 

P3HT Peak Max (cm-1)a FWHM (cm-1 )a Ip/Is   

film, 0° 1450.1 ± 0.1 31.6 ± 0.3 0.490 ± 0.010 

film, 45° 1449.8 ± 0.2 31.9 ± 0.4 0.490 ± 0.009 

film, 90° 1449.9 ± 0.1 31.5 ± 0.2 0.499 ± 0.008 

film, E = 0 1449.7 ± 0.2 32.1 ± 0.4 0.521 ± 0.007 

crystal, E = 0 1453.5 ± 0.1 31.3 ± 0.3 0.512 ± 0.009 

 

a The p- and s-polarized excitation spectra were averaged, as there was no statistically significant 

difference measured between the spectra collected with different polarizations. 
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Figure 7.1.  Diagram of the Van de Graaff electric-field generator, showing the sample placement 

and directions of the electric field relative to the sample.  Also included is the structure of P3HT.  
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(a) (b) 

Figure 7.2.  Polarized fluorescence emission spectra of P3HT thin films: (a) emission parallel, and 

(b) perpendicular to the polarization of the 520 nm excitation beam.  The spectra are normalized 

at the 0-1 vibronic transition.  Sr = I0-0/I0-1.  For (a) Sr = 0.81, 0.77, 0.76 and 0.89 for angles of 0°, 

45°, and 90° and for the control (E = 0), respectively.  Changing the electric field orientation from 

0˚ to 90˚ decreases I0-0, and hence Sr, as indicated by the direction of the black arrow.  This change 

in electric field also induces a red shift in the spectra, as indicated by the direction of the red arrow.  

For (b) Sr = 0.98, 0.88, 0.85, and 0.71, for angles of 0°, 45°, and 90° and for the control (E = 0), 

respectively. From reference (E = 0) film to the films exposed to E-field, I0-0 increases, and hence 

Sr, as indicated by the direction of the black arrow.  This change in electric field also induces a 

blue shift in the spectra, as indicated by the direction of the blue arrow.  (The orientation of the 

polarizers with respect to the electric field is given in Figure S7.2 for further clarification). 
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Figure 7.3.  Fluorescence excitation spectrum of a P3HT film collected with parallel orientation 

of excitation and emission polarizers) (brown curve, right ordinate).  Fluorescence excitation 

anisotropy of P3HT films prepared under different orientations of the applied electric field (left 

ordinate).  λem = 720 nm. 
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Figure 7.4.  Time-resolved polarized emission of P3HT films prepared under (a) 0°, (b) 45°, (c) 

90°, (d) and E = 0 with the emission polarizer parallel to the excitation polarizer (black), and the 

emission polarizer perpendicular to the excitation polarizer (red).  λex = 425 ± 10 nm, and λem = 

720 ± 5 nm.  
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Figure 7.5.  Example polarized Raman spectra for P3HT films oriented under an electric field.  

Peak location and FWHM values do not change. The relative intensities of Ip/Is, however, do 

change for the samples prepared in an external electric field as reported in Table 7.3.  
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